Heaps and unpointed stable homotopy theory
Archivum mathematicum, Tome 50 (2014) no. 5, pp. 323-332
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, we show how certain “stability phenomena” in unpointed model categories provide the sets of homotopy classes with a canonical structure of an abelian heap, i.e. an abelian group without a choice of a zero. In contrast with the classical situation of stable (pointed) model categories, these sets can be empty.
DOI :
10.5817/AM2014-5-323
Classification :
55P42, 55U35
Keywords: stable homotopy; equivariant; fibrewise
Keywords: stable homotopy; equivariant; fibrewise
@article{10_5817_AM2014_5_323,
author = {Vok\v{r}{\'\i}nek, Luk\'a\v{s}},
title = {Heaps and unpointed stable homotopy theory},
journal = {Archivum mathematicum},
pages = {323--332},
publisher = {mathdoc},
volume = {50},
number = {5},
year = {2014},
doi = {10.5817/AM2014-5-323},
mrnumber = {3303781},
zbl = {06487016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-323/}
}
Vokřínek, Lukáš. Heaps and unpointed stable homotopy theory. Archivum mathematicum, Tome 50 (2014) no. 5, pp. 323-332. doi: 10.5817/AM2014-5-323
Cité par Sources :