Heaps and unpointed stable homotopy theory
Archivum mathematicum, Tome 50 (2014) no. 5, pp. 323-332 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we show how certain “stability phenomena” in unpointed model categories provide the sets of homotopy classes with a canonical structure of an abelian heap, i.e. an abelian group without a choice of a zero. In contrast with the classical situation of stable (pointed) model categories, these sets can be empty.
In this paper, we show how certain “stability phenomena” in unpointed model categories provide the sets of homotopy classes with a canonical structure of an abelian heap, i.e. an abelian group without a choice of a zero. In contrast with the classical situation of stable (pointed) model categories, these sets can be empty.
DOI : 10.5817/AM2014-5-323
Classification : 55P42, 55U35
Keywords: stable homotopy; equivariant; fibrewise
@article{10_5817_AM2014_5_323,
     author = {Vok\v{r}{\'\i}nek, Luk\'a\v{s}},
     title = {Heaps and unpointed stable homotopy theory},
     journal = {Archivum mathematicum},
     pages = {323--332},
     year = {2014},
     volume = {50},
     number = {5},
     doi = {10.5817/AM2014-5-323},
     mrnumber = {3303781},
     zbl = {06487016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-323/}
}
TY  - JOUR
AU  - Vokřínek, Lukáš
TI  - Heaps and unpointed stable homotopy theory
JO  - Archivum mathematicum
PY  - 2014
SP  - 323
EP  - 332
VL  - 50
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-323/
DO  - 10.5817/AM2014-5-323
LA  - en
ID  - 10_5817_AM2014_5_323
ER  - 
%0 Journal Article
%A Vokřínek, Lukáš
%T Heaps and unpointed stable homotopy theory
%J Archivum mathematicum
%D 2014
%P 323-332
%V 50
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-323/
%R 10.5817/AM2014-5-323
%G en
%F 10_5817_AM2014_5_323
Vokřínek, Lukáš. Heaps and unpointed stable homotopy theory. Archivum mathematicum, Tome 50 (2014) no. 5, pp. 323-332. doi: 10.5817/AM2014-5-323

[1] Bergman, G.M., Hausknecht, A.O.: Cogroups and co-rings in categories of associative rings. Math. Surveys Monogr., vol. 45, American Mathematical Society, Providence, RI, 1996. | DOI | MR | Zbl

[2] Čadek, M., Krčál, M., Matoušek, J., Vokřínek, L., Wagner, U.: Extendability of continuous maps is undecidable. Discrete Comput. Geom. 51 (2014), 24–66. | DOI

[3] Čadek, M., Krčál, M., Vokřínek, L.: Algorithmic solvability of the lifting-extension problem. Preprint, arXiv:1307.6444, 2013.

[4] Goerss, P.G., Jardine, J.F.: Simplicial homotopy theory. Birkhäuser Verlag, 1999. | MR | Zbl

[5] Hirschhorn, P.S.: Model categories and their localizations. Math. Surveys Monogr., vol. 99, American Mathematical Society, 2003. | MR | Zbl

[6] Mather, M.: Pullbacks in homotopy theory. Canad. J. Math. 28 (1976), 225–263. | DOI | MR

[7] nLab entry on “heap”, http://ncatlab.org/nlab/show/heap</b> tp://ncatlab.org/nlab/show/heap.

[8] Stephan, M.: Elmendorfs theorem for cofibrantly generated model categories. Preprint, arXiv:1308.0856, 2013.

[9] Vokřínek, L.: Computing the abelian heap of unpointed stable homotopy classes of maps. Arch. Math. (Brno) 49 (5) (2013), 359–368. | DOI | MR

Cité par Sources :