Keywords: stable homotopy; equivariant; fibrewise
@article{10_5817_AM2014_5_323,
author = {Vok\v{r}{\'\i}nek, Luk\'a\v{s}},
title = {Heaps and unpointed stable homotopy theory},
journal = {Archivum mathematicum},
pages = {323--332},
year = {2014},
volume = {50},
number = {5},
doi = {10.5817/AM2014-5-323},
mrnumber = {3303781},
zbl = {06487016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-323/}
}
Vokřínek, Lukáš. Heaps and unpointed stable homotopy theory. Archivum mathematicum, Tome 50 (2014) no. 5, pp. 323-332. doi: 10.5817/AM2014-5-323
[1] Bergman, G.M., Hausknecht, A.O.: Cogroups and co-rings in categories of associative rings. Math. Surveys Monogr., vol. 45, American Mathematical Society, Providence, RI, 1996. | DOI | MR | Zbl
[2] Čadek, M., Krčál, M., Matoušek, J., Vokřínek, L., Wagner, U.: Extendability of continuous maps is undecidable. Discrete Comput. Geom. 51 (2014), 24–66. | DOI
[3] Čadek, M., Krčál, M., Vokřínek, L.: Algorithmic solvability of the lifting-extension problem. Preprint, arXiv:1307.6444, 2013.
[4] Goerss, P.G., Jardine, J.F.: Simplicial homotopy theory. Birkhäuser Verlag, 1999. | MR | Zbl
[5] Hirschhorn, P.S.: Model categories and their localizations. Math. Surveys Monogr., vol. 99, American Mathematical Society, 2003. | MR | Zbl
[6] Mather, M.: Pullbacks in homotopy theory. Canad. J. Math. 28 (1976), 225–263. | DOI | MR
[7] nLab entry on “heap”, http://ncatlab.org/nlab/show/heap</b> tp://ncatlab.org/nlab/show/heap.
[8] Stephan, M.: Elmendorfs theorem for cofibrantly generated model categories. Preprint, arXiv:1308.0856, 2013.
[9] Vokřínek, L.: Computing the abelian heap of unpointed stable homotopy classes of maps. Arch. Math. (Brno) 49 (5) (2013), 359–368. | DOI | MR
Cité par Sources :