Keywords: phase space; gravitational contact phase structure; gravitational Jacobi phase structure; infinitesimal symmetry; hidden symmetry; Killing multivector field
@article{10_5817_AM2014_5_297,
author = {Jany\v{s}ka, Josef},
title = {Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle},
journal = {Archivum mathematicum},
pages = {297--316},
year = {2014},
volume = {50},
number = {5},
doi = {10.5817/AM2014-5-297},
mrnumber = {3303779},
zbl = {06487014},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-297/}
}
TY - JOUR AU - Janyška, Josef TI - Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle JO - Archivum mathematicum PY - 2014 SP - 297 EP - 316 VL - 50 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-297/ DO - 10.5817/AM2014-5-297 LA - en ID - 10_5817_AM2014_5_297 ER -
%0 Journal Article %A Janyška, Josef %T Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle %J Archivum mathematicum %D 2014 %P 297-316 %V 50 %N 5 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-297/ %R 10.5817/AM2014-5-297 %G en %F 10_5817_AM2014_5_297
Janyška, Josef. Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle. Archivum mathematicum, Tome 50 (2014) no. 5, pp. 297-316. doi: 10.5817/AM2014-5-297
[1] Crampin, M.: Hidden symmetries and Killing tensors. Reports Math. Phys. 20 (1984), 31–40. | DOI | MR | Zbl
[2] de Leon, M., Tuynman, G.M.: A universal model for cosymplectic manifolds. J. Geom. Phys. 20 (1996), 77–86. | DOI | MR | Zbl
[3] Gielen, S., Wise, D.K.: Lifting general relativity to observer space. J. Math. Phys. 54 (2013), 29pp., 052501. | DOI | MR | Zbl
[4] Iwai, T.: Symmetries in relativistic dynamics of a charged particle. Ann. Inst. H. Poincaré Sect. A (N.S.) 25 (1976), 335–343. | MR | Zbl
[5] Janyška, J.: Special phase functions and phase infinitesimal symmetries in classical general relativity. AIP Conf. Proc. 1460, XX Internat. Fall Workshop on Geometry and Physics, 2012, pp. 135–140.
[6] Janyška, J.: Special bracket versus Jacobi bracket on the classical phase space of general relativistic test particle. Int. J. Geom. Methods Mod. Phys. 11 (2014), 31pp., 1460020. | DOI | MR
[7] Janyška, J., Modugno, M.: Classical particle phase space in general relativity. Differential Geometry and Applications, Proc. Conf., Aug. 28 – Sept. 1, 1995, Brno, Czech Republic, Masaryk University, Brno, 1996, pp. 573–602. | MR | Zbl
[8] Janyška, J., Modugno, M.: Geometric structures of the classical general relativistic phase space. Int. J. Geom. Methods Mod. Phys. 5 (2008), 699–754. | DOI | MR | Zbl
[9] Janyška, J., Modugno, M.: Generalized geometrical structures of odd dimensional manifolds. J. Math. Pures Appl. 9 (2009), 211–232. | DOI | MR | Zbl
[10] Janyška, J., Modugno, M., Vitolo, R.: An algebraic approach to physical scales. Acta Appl. Math. 110 (2010), 1249–1276. | DOI | MR | Zbl
[11] Janyška, J., Vitolo, R.: On the characterization of infinitesimal symmetries of the relativistic phase space. J. Phys. A: Math. Theor. 45 (2012), 28pp., 485205. | DOI | MR
[12] Libermann, P., Marle, Ch.M.: Symplectic Geometry and Analytical Mechanics. Reidel Publ., Dordrecht, 1987. | MR | Zbl
[13] Lichnerowicz, A.: Les varietés de Jacobi et leurs algèbres de Lie associées. J. Math. Pures Appl. 57 (1978), 453–488. | MR | Zbl
[14] Manno, G., Vitolo, R.: Relativistic mechanics, contact manifolds and symmetries. Note Mat. 23 (2004/2005), 157–171. | MR
[15] Michor, P.W., Dubois-Violette, M.: A common generalization of the Frölicher–Nijenhuis bracket and the Schouten bracket for symmetric multivector fields. Indagationes Math. N.S. 6 (1995), 51–66. | DOI | MR | Zbl
[16] Olver, P.: Applications of Lie groups to differential equations. Graduate Texts in Mathematics, vol. 107, Springer, 1986. | DOI | MR | Zbl
[17] Schouten, J.A.: Ueber Differentialkomitanten zweier kontravarianter Grössen. Nederl. Akad. Wetensch., Proc. 43 (1940), 1160–1170. | MR
[18] Sommers, P.: On Killing tensors and constant of motions. J. Math. Phys. 14 (1973), 787–790. | DOI | MR
[19] Vaisman, I.: Lectures on the Geometry of Poisson Manifolds. Birkhäuser Verlag, Basel-Boston-Berlin, 1994. | MR | Zbl
[20] Vinogradov, A.M.: An informal introduction to the geometry of jet spaces. Rend. Seminari Fac. Sci. Univ. Cagliari 48 (1988), 301–333. | MR
[21] Vitolo, R.: Quantum structures in Einstein general relativity. Lett. Math. Phys. 51 (2000), 119–133. | DOI | MR | Zbl
[22] Woodhouse, N.M.J.: Killing tensors and the separation of the Hamilton-Jacobi equation. Commun. Math. Phys. 44 (1975), 9–38. | DOI | MR | Zbl
Cité par Sources :