Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle
Archivum mathematicum, Tome 50 (2014) no. 5, pp. 297-316 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The phase space of general relativistic test particle is defined as the 1-jet space of motions. A Lorentzian metric defines the canonical contact structure on the odd-dimensional phase space. In the paper we study infinitesimal symmetries of the gravitational contact phase structure which are not generated by spacetime infinitesimal symmetries, i.e. they are hidden symmetries. We prove that Killing multivector fields admit hidden symmetries of the gravitational contact phase structure and we give the explicit description of such hidden symmetries.
The phase space of general relativistic test particle is defined as the 1-jet space of motions. A Lorentzian metric defines the canonical contact structure on the odd-dimensional phase space. In the paper we study infinitesimal symmetries of the gravitational contact phase structure which are not generated by spacetime infinitesimal symmetries, i.e. they are hidden symmetries. We prove that Killing multivector fields admit hidden symmetries of the gravitational contact phase structure and we give the explicit description of such hidden symmetries.
DOI : 10.5817/AM2014-5-297
Classification : 58A20, 70G45, 70H33, 70H40, 70H45
Keywords: phase space; gravitational contact phase structure; gravitational Jacobi phase structure; infinitesimal symmetry; hidden symmetry; Killing multivector field
@article{10_5817_AM2014_5_297,
     author = {Jany\v{s}ka, Josef},
     title = {Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle},
     journal = {Archivum mathematicum},
     pages = {297--316},
     year = {2014},
     volume = {50},
     number = {5},
     doi = {10.5817/AM2014-5-297},
     mrnumber = {3303779},
     zbl = {06487014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-297/}
}
TY  - JOUR
AU  - Janyška, Josef
TI  - Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle
JO  - Archivum mathematicum
PY  - 2014
SP  - 297
EP  - 316
VL  - 50
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-297/
DO  - 10.5817/AM2014-5-297
LA  - en
ID  - 10_5817_AM2014_5_297
ER  - 
%0 Journal Article
%A Janyška, Josef
%T Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle
%J Archivum mathematicum
%D 2014
%P 297-316
%V 50
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-297/
%R 10.5817/AM2014-5-297
%G en
%F 10_5817_AM2014_5_297
Janyška, Josef. Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle. Archivum mathematicum, Tome 50 (2014) no. 5, pp. 297-316. doi: 10.5817/AM2014-5-297

[1] Crampin, M.: Hidden symmetries and Killing tensors. Reports Math. Phys. 20 (1984), 31–40. | DOI | MR | Zbl

[2] de Leon, M., Tuynman, G.M.: A universal model for cosymplectic manifolds. J. Geom. Phys. 20 (1996), 77–86. | DOI | MR | Zbl

[3] Gielen, S., Wise, D.K.: Lifting general relativity to observer space. J. Math. Phys. 54 (2013), 29pp., 052501. | DOI | MR | Zbl

[4] Iwai, T.: Symmetries in relativistic dynamics of a charged particle. Ann. Inst. H. Poincaré Sect. A (N.S.) 25 (1976), 335–343. | MR | Zbl

[5] Janyška, J.: Special phase functions and phase infinitesimal symmetries in classical general relativity. AIP Conf. Proc. 1460, XX Internat. Fall Workshop on Geometry and Physics, 2012, pp. 135–140.

[6] Janyška, J.: Special bracket versus Jacobi bracket on the classical phase space of general relativistic test particle. Int. J. Geom. Methods Mod. Phys. 11 (2014), 31pp., 1460020. | DOI | MR

[7] Janyška, J., Modugno, M.: Classical particle phase space in general relativity. Differential Geometry and Applications, Proc. Conf., Aug. 28 – Sept. 1, 1995, Brno, Czech Republic, Masaryk University, Brno, 1996, pp. 573–602. | MR | Zbl

[8] Janyška, J., Modugno, M.: Geometric structures of the classical general relativistic phase space. Int. J. Geom. Methods Mod. Phys. 5 (2008), 699–754. | DOI | MR | Zbl

[9] Janyška, J., Modugno, M.: Generalized geometrical structures of odd dimensional manifolds. J. Math. Pures Appl. 9 (2009), 211–232. | DOI | MR | Zbl

[10] Janyška, J., Modugno, M., Vitolo, R.: An algebraic approach to physical scales. Acta Appl. Math. 110 (2010), 1249–1276. | DOI | MR | Zbl

[11] Janyška, J., Vitolo, R.: On the characterization of infinitesimal symmetries of the relativistic phase space. J. Phys. A: Math. Theor. 45 (2012), 28pp., 485205. | DOI | MR

[12] Libermann, P., Marle, Ch.M.: Symplectic Geometry and Analytical Mechanics. Reidel Publ., Dordrecht, 1987. | MR | Zbl

[13] Lichnerowicz, A.: Les varietés de Jacobi et leurs algèbres de Lie associées. J. Math. Pures Appl. 57 (1978), 453–488. | MR | Zbl

[14] Manno, G., Vitolo, R.: Relativistic mechanics, contact manifolds and symmetries. Note Mat. 23 (2004/2005), 157–171. | MR

[15] Michor, P.W., Dubois-Violette, M.: A common generalization of the Frölicher–Nijenhuis bracket and the Schouten bracket for symmetric multivector fields. Indagationes Math. N.S. 6 (1995), 51–66. | DOI | MR | Zbl

[16] Olver, P.: Applications of Lie groups to differential equations. Graduate Texts in Mathematics, vol. 107, Springer, 1986. | DOI | MR | Zbl

[17] Schouten, J.A.: Ueber Differentialkomitanten zweier kontravarianter Grössen. Nederl. Akad. Wetensch., Proc. 43 (1940), 1160–1170. | MR

[18] Sommers, P.: On Killing tensors and constant of motions. J. Math. Phys. 14 (1973), 787–790. | DOI | MR

[19] Vaisman, I.: Lectures on the Geometry of Poisson Manifolds. Birkhäuser Verlag, Basel-Boston-Berlin, 1994. | MR | Zbl

[20] Vinogradov, A.M.: An informal introduction to the geometry of jet spaces. Rend. Seminari Fac. Sci. Univ. Cagliari 48 (1988), 301–333. | MR

[21] Vitolo, R.: Quantum structures in Einstein general relativity. Lett. Math. Phys. 51 (2000), 119–133. | DOI | MR | Zbl

[22] Woodhouse, N.M.J.: Killing tensors and the separation of the Hamilton-Jacobi equation. Commun. Math. Phys. 44 (1975), 9–38. | DOI | MR | Zbl

Cité par Sources :