On $F^\varepsilon _2$-planar mappings of (pseudo-) Riemannian manifolds
Archivum mathematicum, Tome 50 (2014) no. 5, pp. 287-295 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study special $F$-planar mappings between two $n$-dimensional (pseudo-) Riemannian manifolds. In 2003 Topalov introduced $PQ^{\varepsilon }$-projectivity of Riemannian metrics, $\varepsilon \ne 1,1+n$. Later these mappings were studied by Matveev and Rosemann. They found that for $\varepsilon =0$ they are projective. We show that $PQ^{\varepsilon }$-projective equivalence corresponds to a special case of $F$-planar mapping studied by Mikeš and Sinyukov (1983) and ${F_2}$-planar mappings (Mikeš, 1994), with $F=Q$. Moreover, the tensor $P$ is derived from the tensor $Q$ and the non-zero number $\varepsilon $. For this reason we suggest to rename $PQ^{\varepsilon }$ as ${F_2^{\varepsilon }}$. We use earlier results derived for ${F}$- and ${F_2}$-planar mappings and find new results. For these mappings we find the fundamental partial differential equations in closed linear Cauchy type form and we obtain new results for initial conditions.
We study special $F$-planar mappings between two $n$-dimensional (pseudo-) Riemannian manifolds. In 2003 Topalov introduced $PQ^{\varepsilon }$-projectivity of Riemannian metrics, $\varepsilon \ne 1,1+n$. Later these mappings were studied by Matveev and Rosemann. They found that for $\varepsilon =0$ they are projective. We show that $PQ^{\varepsilon }$-projective equivalence corresponds to a special case of $F$-planar mapping studied by Mikeš and Sinyukov (1983) and ${F_2}$-planar mappings (Mikeš, 1994), with $F=Q$. Moreover, the tensor $P$ is derived from the tensor $Q$ and the non-zero number $\varepsilon $. For this reason we suggest to rename $PQ^{\varepsilon }$ as ${F_2^{\varepsilon }}$. We use earlier results derived for ${F}$- and ${F_2}$-planar mappings and find new results. For these mappings we find the fundamental partial differential equations in closed linear Cauchy type form and we obtain new results for initial conditions.
DOI : 10.5817/AM2014-5-287
Classification : 53B20, 53B30, 53B35, 53B50
Keywords: $F^\varepsilon _2$-planar mapping; $PQ^\varepsilon $-projective equivalence; $F$-planar mapping; fundamental equation; (pseudo-) Riemannian manifold
@article{10_5817_AM2014_5_287,
     author = {Hinterleitner, Irena and Mike\v{s}, Josef and Pe\v{s}ka, Patrik},
     title = {On $F^\varepsilon _2$-planar mappings of (pseudo-) {Riemannian} manifolds},
     journal = {Archivum mathematicum},
     pages = {287--295},
     year = {2014},
     volume = {50},
     number = {5},
     doi = {10.5817/AM2014-5-287},
     mrnumber = {3303778},
     zbl = {06487013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-287/}
}
TY  - JOUR
AU  - Hinterleitner, Irena
AU  - Mikeš, Josef
AU  - Peška, Patrik
TI  - On $F^\varepsilon _2$-planar mappings of (pseudo-) Riemannian manifolds
JO  - Archivum mathematicum
PY  - 2014
SP  - 287
EP  - 295
VL  - 50
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-287/
DO  - 10.5817/AM2014-5-287
LA  - en
ID  - 10_5817_AM2014_5_287
ER  - 
%0 Journal Article
%A Hinterleitner, Irena
%A Mikeš, Josef
%A Peška, Patrik
%T On $F^\varepsilon _2$-planar mappings of (pseudo-) Riemannian manifolds
%J Archivum mathematicum
%D 2014
%P 287-295
%V 50
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-287/
%R 10.5817/AM2014-5-287
%G en
%F 10_5817_AM2014_5_287
Hinterleitner, Irena; Mikeš, Josef; Peška, Patrik. On $F^\varepsilon _2$-planar mappings of (pseudo-) Riemannian manifolds. Archivum mathematicum, Tome 50 (2014) no. 5, pp. 287-295. doi: 10.5817/AM2014-5-287

[1] Chudá, H., Shiha, M.: Conformal holomorphically projective mappings satisfying a certain initial condition. Miskolc Math. Notes 14 (2) (2013), 569–574. | MR | Zbl

[2] Hinterleitner, I.: On holomorphically projective mappings of e-Kähler manifolds. Arch. Mat. (Brno) 48 (2012), 333–338. | DOI | MR | Zbl

[3] Hinterleitner, I., Mikeš, J.: On $F$-planar mappings of spaces with affine connections. Note Mat. 27 (2007), 111–118. | MR

[4] Hinterleitner, I., Mikeš, J.: Fundamental equations of geodesic mappings and their generalizations. J. Math. Sci. 174 (5) (2011), 537–554. | DOI

[5] Hinterleitner, I., Mikeš, J.: Projective equivalence and spaces with equi-affine connection. J. Math. Sci. 177 (2011), 546–550, transl. from Fundam. Prikl. Mat. 16 (2010), 47–54. | DOI | MR

[6] Hinterleitner, I., Mikeš, J.: Geodesic Mappings and Einstein Spaces. Geometric Methods in Physics, Birkhäuser Basel, 2013, arXiv: 1201.2827v1 [math.DG], 2012. | MR | Zbl

[7] Hinterleitner, I., Mikeš, J.: On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds. Arch. Math. (Brno) 49 (5) (2013), 295–302. | DOI | MR

[8] Hinterleitner, I., Mikeš, J., Stránská, J.: Infinitesimal $F$-planar transformations. Russ. Math. 52 (2008), 13–18, transl. from Izv. Vyssh. Uchebn. Zaved., Mat. (2008), 16–22. | DOI | MR

[9] Hrdina, J.: Almost complex projective structures and their morphisms. Arch. Mat. (Brno) 45 (2009), 255–264. | MR | Zbl

[10] Hrdina, J., Slovák, J.: Generalized planar curves and quaternionic geometry. Ann. Global Anal. Geom. 29 (4) (2006), 349–360. | DOI | MR

[11] Hrdina, J., Slovák, J.: Morphisms of almost product projective geometries. Proc. 10th Int. Conf. on Diff. Geom. and its Appl., DGA 2007, Olomouc. Hackensack, NJ: World Sci., 2008, pp. 253–261. | MR

[12] Hrdina, J., Vašík, P.: Generalized geodesics on almost Cliffordian geometries. Balkan J. Geom. Appl. 17 (1) (2012), 41–48. | MR | Zbl

[13] Jukl, M., Juklová, L., Mikeš, J.: Some results on traceless decomposition of tensors. J. Math. Sci. (New York) 174 (2011), 627–640. | DOI

[14] Lami, R.J.K. al, Škodová, M., Mikeš, J.: On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces. Arch. Math. (Brno) 42 (5) (2006), 291–299. | MR | Zbl

[15] Levi-Civita, T.: Sulle transformationi delle equazioni dinamiche. Ann. Mat. Milano 24 Ser. 2 (1886), 255–300.

[16] Matveev, V., Rosemann, S.: Two remarks on $PQ^{\varepsilon }$-projectivity of Riemanninan metrics. Glasgow Math. J. 55 (1) (2013), 131–138. | DOI | MR

[17] Mikeš, J.: On holomorphically projective mappings of Kählerian spaces. Ukr. Geom. Sb., Kharkov 23 (1980), 90–98. | Zbl

[18] Mikeš, J.: Special $F$-planar mappings of affinely connected spaces onto Riemannian spaces. Mosc. Univ. Math. Bull. 49 (1994), 15–21, translation from Vestn. Mosk. Univ., Ser. 1 (1994), 18–24. | MR | Zbl

[19] Mikeš, J.: Holomorphically projective mappings and their generalizations. J. Math. Sci. (New York) 89 (1998), 1334–1353. | DOI | MR

[20] Mikeš, J., Chudá, H., Hinterleitner, I.: Conformal holomorphically projective mappings of almost Hermitian manifolds with a certain initial condition. Int. J. Geom. Methods in Modern Phys. 11 (5) (2014), Article Number 1450044. | DOI | MR

[21] Mikeš, J., Pokorná, O.: On holomorphically projective mappings onto almost Hermitian spaces. 8th Int. Conf. Opava, 2001, pp. 43–48. | MR | Zbl

[22] Mikeš, J., Pokorná, O.: On holomorphically projective mappings onto Kählerian spaces. Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 181–186. | MR

[23] Mikeš, J., Shiha, M., Vanžurová, A.: Invariant objects by holomorphically projective mappings of Kähler space. 8th Int. Conf. APLIMAT 2009: 8th Int. Conf. Proc., 2009, pp. 439–444.

[24] Mikeš, J., Sinyukov, N.S.: On quasiplanar mappings of space of affine connection. Sov. Math. (1983), 63–70, translation from Izv. Vyssh. Uchebn. Zaved., Mat. (1983), 55–61. | MR

[25] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and some Generalizations. Palacky University Press, Olomouc, 2009. | MR

[26] Otsuki, T., Tashiro, Y.: On curves in Kaehlerian spaces. Math. J. Okayama Univ. 4 (1954), 57–78. | MR | Zbl

[27] Petrov, A.Z.: Simulation of physical fields. Gravitatsiya i Teor. Otnositenosti 4–5 (1968), 7–21. | MR

[28] Prvanović, M.: Holomorphically projective transformations in a locally product space. Math. Balkanica (N.S.) 1 (1971), 195–213. | MR

[29] Sinyukov, N.S.: Geodesic Mappings of Riemannian Spaces. Moscow: Nauka, 1979, 256pp. | MR | Zbl

[30] Škodová, M., Mikeš, J., Pokorná, O.: On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces. Rend. Circ. Mat. Palermo (2) Suppl., vol. 75, 2005, pp. 309–316. | MR | Zbl

[31] Stanković, M.S., Zlatanović, M.L., Velimirović, L.S.: Equitorsion holomorphically projective mappings of generalized Kählerian space of the first kind. Czechoslovak Math. J. 60 (2010), 635–653. | DOI | MR | Zbl

[32] Topalov, P.: Geodesic compatibility and integrability of geodesic flows. J. Math. Phys. 44 (2) (2003), 913–929. | DOI | MR | Zbl

[33] Yano, K.: Differential geometry on complex and almost complex spaces. vol. XII, Pergamon Press, Oxford-London-New York-Paris-Frankfurt, 1965, 323pp. | MR | Zbl

Cité par Sources :