Keywords: $F^\varepsilon _2$-planar mapping; $PQ^\varepsilon $-projective equivalence; $F$-planar mapping; fundamental equation; (pseudo-) Riemannian manifold
@article{10_5817_AM2014_5_287,
author = {Hinterleitner, Irena and Mike\v{s}, Josef and Pe\v{s}ka, Patrik},
title = {On $F^\varepsilon _2$-planar mappings of (pseudo-) {Riemannian} manifolds},
journal = {Archivum mathematicum},
pages = {287--295},
year = {2014},
volume = {50},
number = {5},
doi = {10.5817/AM2014-5-287},
mrnumber = {3303778},
zbl = {06487013},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-287/}
}
TY - JOUR AU - Hinterleitner, Irena AU - Mikeš, Josef AU - Peška, Patrik TI - On $F^\varepsilon _2$-planar mappings of (pseudo-) Riemannian manifolds JO - Archivum mathematicum PY - 2014 SP - 287 EP - 295 VL - 50 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-287/ DO - 10.5817/AM2014-5-287 LA - en ID - 10_5817_AM2014_5_287 ER -
%0 Journal Article %A Hinterleitner, Irena %A Mikeš, Josef %A Peška, Patrik %T On $F^\varepsilon _2$-planar mappings of (pseudo-) Riemannian manifolds %J Archivum mathematicum %D 2014 %P 287-295 %V 50 %N 5 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-287/ %R 10.5817/AM2014-5-287 %G en %F 10_5817_AM2014_5_287
Hinterleitner, Irena; Mikeš, Josef; Peška, Patrik. On $F^\varepsilon _2$-planar mappings of (pseudo-) Riemannian manifolds. Archivum mathematicum, Tome 50 (2014) no. 5, pp. 287-295. doi: 10.5817/AM2014-5-287
[1] Chudá, H., Shiha, M.: Conformal holomorphically projective mappings satisfying a certain initial condition. Miskolc Math. Notes 14 (2) (2013), 569–574. | MR | Zbl
[2] Hinterleitner, I.: On holomorphically projective mappings of e-Kähler manifolds. Arch. Mat. (Brno) 48 (2012), 333–338. | DOI | MR | Zbl
[3] Hinterleitner, I., Mikeš, J.: On $F$-planar mappings of spaces with affine connections. Note Mat. 27 (2007), 111–118. | MR
[4] Hinterleitner, I., Mikeš, J.: Fundamental equations of geodesic mappings and their generalizations. J. Math. Sci. 174 (5) (2011), 537–554. | DOI
[5] Hinterleitner, I., Mikeš, J.: Projective equivalence and spaces with equi-affine connection. J. Math. Sci. 177 (2011), 546–550, transl. from Fundam. Prikl. Mat. 16 (2010), 47–54. | DOI | MR
[6] Hinterleitner, I., Mikeš, J.: Geodesic Mappings and Einstein Spaces. Geometric Methods in Physics, Birkhäuser Basel, 2013, arXiv: 1201.2827v1 [math.DG], 2012. | MR | Zbl
[7] Hinterleitner, I., Mikeš, J.: On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds. Arch. Math. (Brno) 49 (5) (2013), 295–302. | DOI | MR
[8] Hinterleitner, I., Mikeš, J., Stránská, J.: Infinitesimal $F$-planar transformations. Russ. Math. 52 (2008), 13–18, transl. from Izv. Vyssh. Uchebn. Zaved., Mat. (2008), 16–22. | DOI | MR
[9] Hrdina, J.: Almost complex projective structures and their morphisms. Arch. Mat. (Brno) 45 (2009), 255–264. | MR | Zbl
[10] Hrdina, J., Slovák, J.: Generalized planar curves and quaternionic geometry. Ann. Global Anal. Geom. 29 (4) (2006), 349–360. | DOI | MR
[11] Hrdina, J., Slovák, J.: Morphisms of almost product projective geometries. Proc. 10th Int. Conf. on Diff. Geom. and its Appl., DGA 2007, Olomouc. Hackensack, NJ: World Sci., 2008, pp. 253–261. | MR
[12] Hrdina, J., Vašík, P.: Generalized geodesics on almost Cliffordian geometries. Balkan J. Geom. Appl. 17 (1) (2012), 41–48. | MR | Zbl
[13] Jukl, M., Juklová, L., Mikeš, J.: Some results on traceless decomposition of tensors. J. Math. Sci. (New York) 174 (2011), 627–640. | DOI
[14] Lami, R.J.K. al, Škodová, M., Mikeš, J.: On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces. Arch. Math. (Brno) 42 (5) (2006), 291–299. | MR | Zbl
[15] Levi-Civita, T.: Sulle transformationi delle equazioni dinamiche. Ann. Mat. Milano 24 Ser. 2 (1886), 255–300.
[16] Matveev, V., Rosemann, S.: Two remarks on $PQ^{\varepsilon }$-projectivity of Riemanninan metrics. Glasgow Math. J. 55 (1) (2013), 131–138. | DOI | MR
[17] Mikeš, J.: On holomorphically projective mappings of Kählerian spaces. Ukr. Geom. Sb., Kharkov 23 (1980), 90–98. | Zbl
[18] Mikeš, J.: Special $F$-planar mappings of affinely connected spaces onto Riemannian spaces. Mosc. Univ. Math. Bull. 49 (1994), 15–21, translation from Vestn. Mosk. Univ., Ser. 1 (1994), 18–24. | MR | Zbl
[19] Mikeš, J.: Holomorphically projective mappings and their generalizations. J. Math. Sci. (New York) 89 (1998), 1334–1353. | DOI | MR
[20] Mikeš, J., Chudá, H., Hinterleitner, I.: Conformal holomorphically projective mappings of almost Hermitian manifolds with a certain initial condition. Int. J. Geom. Methods in Modern Phys. 11 (5) (2014), Article Number 1450044. | DOI | MR
[21] Mikeš, J., Pokorná, O.: On holomorphically projective mappings onto almost Hermitian spaces. 8th Int. Conf. Opava, 2001, pp. 43–48. | MR | Zbl
[22] Mikeš, J., Pokorná, O.: On holomorphically projective mappings onto Kählerian spaces. Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 181–186. | MR
[23] Mikeš, J., Shiha, M., Vanžurová, A.: Invariant objects by holomorphically projective mappings of Kähler space. 8th Int. Conf. APLIMAT 2009: 8th Int. Conf. Proc., 2009, pp. 439–444.
[24] Mikeš, J., Sinyukov, N.S.: On quasiplanar mappings of space of affine connection. Sov. Math. (1983), 63–70, translation from Izv. Vyssh. Uchebn. Zaved., Mat. (1983), 55–61. | MR
[25] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and some Generalizations. Palacky University Press, Olomouc, 2009. | MR
[26] Otsuki, T., Tashiro, Y.: On curves in Kaehlerian spaces. Math. J. Okayama Univ. 4 (1954), 57–78. | MR | Zbl
[27] Petrov, A.Z.: Simulation of physical fields. Gravitatsiya i Teor. Otnositenosti 4–5 (1968), 7–21. | MR
[28] Prvanović, M.: Holomorphically projective transformations in a locally product space. Math. Balkanica (N.S.) 1 (1971), 195–213. | MR
[29] Sinyukov, N.S.: Geodesic Mappings of Riemannian Spaces. Moscow: Nauka, 1979, 256pp. | MR | Zbl
[30] Škodová, M., Mikeš, J., Pokorná, O.: On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces. Rend. Circ. Mat. Palermo (2) Suppl., vol. 75, 2005, pp. 309–316. | MR | Zbl
[31] Stanković, M.S., Zlatanović, M.L., Velimirović, L.S.: Equitorsion holomorphically projective mappings of generalized Kählerian space of the first kind. Czechoslovak Math. J. 60 (2010), 635–653. | DOI | MR | Zbl
[32] Topalov, P.: Geodesic compatibility and integrability of geodesic flows. J. Math. Phys. 44 (2) (2003), 913–929. | DOI | MR | Zbl
[33] Yano, K.: Differential geometry on complex and almost complex spaces. vol. XII, Pergamon Press, Oxford-London-New York-Paris-Frankfurt, 1965, 323pp. | MR | Zbl
Cité par Sources :