Effective homology for homotopy colimit and cofibrant replacement
Archivum mathematicum, Tome 50 (2014) no. 5, pp. 273-286 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We extend the notion of simplicial set with effective homology presented in [22] to diagrams of simplicial sets. Further, for a given finite diagram of simplicial sets $X \colon \mathcal{I}\rightarrow \mbox{sSet}$ such that each simplicial set $X(i)$ has effective homology, we present an algorithm computing the homotopy colimit $\mbox{hocolim}\,X$ as a simplicial set with effective homology. We also give an algorithm computing the cofibrant replacement $X^{\mbox{cof}}$ of $X$ as a diagram with effective homology. This is applied to computing of equivariant cohomology operations.
We extend the notion of simplicial set with effective homology presented in [22] to diagrams of simplicial sets. Further, for a given finite diagram of simplicial sets $X \colon \mathcal{I}\rightarrow \mbox{sSet}$ such that each simplicial set $X(i)$ has effective homology, we present an algorithm computing the homotopy colimit $\mbox{hocolim}\,X$ as a simplicial set with effective homology. We also give an algorithm computing the cofibrant replacement $X^{\mbox{cof}}$ of $X$ as a diagram with effective homology. This is applied to computing of equivariant cohomology operations.
DOI : 10.5817/AM2014-5-273
Classification : 55N91, 55U15
Keywords: homotopy colimit; cofibrant replacement; effective homology; equivariant
@article{10_5817_AM2014_5_273,
     author = {Filakovsk\'y, Marek},
     title = {Effective homology for homotopy colimit and cofibrant replacement},
     journal = {Archivum mathematicum},
     pages = {273--286},
     year = {2014},
     volume = {50},
     number = {5},
     doi = {10.5817/AM2014-5-273},
     mrnumber = {3303777},
     zbl = {06487012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-273/}
}
TY  - JOUR
AU  - Filakovský, Marek
TI  - Effective homology for homotopy colimit and cofibrant replacement
JO  - Archivum mathematicum
PY  - 2014
SP  - 273
EP  - 286
VL  - 50
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-273/
DO  - 10.5817/AM2014-5-273
LA  - en
ID  - 10_5817_AM2014_5_273
ER  - 
%0 Journal Article
%A Filakovský, Marek
%T Effective homology for homotopy colimit and cofibrant replacement
%J Archivum mathematicum
%D 2014
%P 273-286
%V 50
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-273/
%R 10.5817/AM2014-5-273
%G en
%F 10_5817_AM2014_5_273
Filakovský, Marek. Effective homology for homotopy colimit and cofibrant replacement. Archivum mathematicum, Tome 50 (2014) no. 5, pp. 273-286. doi: 10.5817/AM2014-5-273

[1] Bousfield, A.K., Kan, D.M.: Homotopy Limits, Completions and Localizations. Lecture Notes in Math., no. 304, Springer, 1972. | DOI | MR | Zbl

[2] Bredon, G.: Equivariant cohomology theories. Lecture Notes in Math., no. 34, Springer-Verlag, Berlin-New York, 1967. | MR | Zbl

[3] Brown, R.: The twisted Eilenberg-Zilber theorem. 1965 Simposio di Topologia (Messina, 1964), 1965, pp. 33–37. | MR

[4] Čadek, M., Krčál, M., Matoušek, J., Sergeraert, F., Vokřínek, L., Wagner, U.: Computing all maps into a sphere. J. ACM 61 (2014), article no. 17. | DOI | MR | Zbl

[5] Čadek, M., Krčál, M., Matoušek, J., Vokřínek, L., Wagner, U.: Polynomial time computation of homotopy groups and Postnikov systems in fixed dimensions. SIAM J. Comput. 43 (2014), 1728–1780. | DOI | MR

[6] Čadek, M., Krčál, M., Vokřínek, L.: Algorithmic solvability of lifting extension problem. arXiv:1307.6444, 2013.

[7] Dugger, D.: A primer on homotopy colimits. http://math.uoregon.edu/~ddugger/hocolim.pdf, 2008.

[8] Dwyer, W., Hirschhorn, P., Kan, D., Smith, J.: Homotopy Limit Functors on Model Categories and Homotopical Categories. Math. Surveys Monogr., vol. 113, American Mathematical Society, Providence, 2004. | MR | Zbl

[9] Dwyer, W.G., Kan, D.M.: An obstruction theory for diagrams of simplicial sets. Nederl. Akad. Wetensch. Indag. Math. 46 (2) (1984), 139–146. | DOI | MR | Zbl

[10] Eilenberg, S., MacLane, S.: On the groups $H(\pi , n)$, I. Ann. of Math. (2) 58 (1953), 55–106. | MR | Zbl

[11] Eilenberg, S., MacLane, S.: On the groups $H(\pi , n)$, II. Ann. of Math. (2) 60 (1954), 49–139. | MR | Zbl

[12] Elmendorf, A.D.: Systems of fixed points sets. Trans. Amer. Math. Soc. 277 (1983), 275–284. | DOI | MR

[13] Filakovský, M., Vokřínek, L.: Are two maps homotopic? An algorithmic viewpoint. arXiv:1312.2337, 2013.

[14] Goerss, P.G., Jardine, J.F.: Simplicial homotopy theory. Birkhauser, Boston-Basel-Berlin, 1999. | MR | Zbl

[15] Gugenheim, V.K.A.M.: On the chain-complex of a fibration. Illinois J. Math. 16 (1972), 398–414. | MR | Zbl

[16] Heras, J.: Effective homology for the pushout of simplicial sets. Proceedings XII Encuentros de Algebra Computacional y Aplicaciones (EACA 2010), 2010, pp. 152–156.

[17] Isaacson, S.B.: Exercises on homotopy colimits. http://math.mit.edu/~mbehrens/TAGS/Isaacson_exer.pdf

[18] Krčál, M., Matoušek, J., Sergeraert, F.: Polynomial-time homology for simplicial Eilenberg-MacLane spaces. arXiv:1201.6222, 2012. | MR | Zbl

[19] May, J.P.: Simplicial Objects in Algebraic Topology. Chicago Lectures in Math., Univ. Chicago Press, 1992, 1992 reprint of 1967 original. | MR | Zbl

[20] May, J.P., Piacenza, R.J., Cole, M.: Equivariant homotopy and cohomology theory: Dedicated to the memory of Robert J. Piacenza. Providence, R.I.: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 1996. | MR

[21] Riehl, E.: Categorical Homotopy Theory. Cambridge University Press, 2014. | MR

[22] Rubio, J., Sergeraert, F.: Constructive Homological Algebra and Applications. Tech. report, Written in 2006 for a MAP Summer School at the University of Genova, 2012, arXiv:1208.3816v2.

[23] Shih, W.: Homologie des espaces fibrés. Publications Mathématiques de l'IHÉS 13 (1962), 5–87. | MR | Zbl

[24] Stephan, M.: On equivariant homotopy theory for model categories. arXiv:1308.0856, 2013.

Cité par Sources :