Keywords: homotopy colimit; cofibrant replacement; effective homology; equivariant
@article{10_5817_AM2014_5_273,
author = {Filakovsk\'y, Marek},
title = {Effective homology for homotopy colimit and cofibrant replacement},
journal = {Archivum mathematicum},
pages = {273--286},
year = {2014},
volume = {50},
number = {5},
doi = {10.5817/AM2014-5-273},
mrnumber = {3303777},
zbl = {06487012},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-273/}
}
TY - JOUR AU - Filakovský, Marek TI - Effective homology for homotopy colimit and cofibrant replacement JO - Archivum mathematicum PY - 2014 SP - 273 EP - 286 VL - 50 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-273/ DO - 10.5817/AM2014-5-273 LA - en ID - 10_5817_AM2014_5_273 ER -
Filakovský, Marek. Effective homology for homotopy colimit and cofibrant replacement. Archivum mathematicum, Tome 50 (2014) no. 5, pp. 273-286. doi: 10.5817/AM2014-5-273
[1] Bousfield, A.K., Kan, D.M.: Homotopy Limits, Completions and Localizations. Lecture Notes in Math., no. 304, Springer, 1972. | DOI | MR | Zbl
[2] Bredon, G.: Equivariant cohomology theories. Lecture Notes in Math., no. 34, Springer-Verlag, Berlin-New York, 1967. | MR | Zbl
[3] Brown, R.: The twisted Eilenberg-Zilber theorem. 1965 Simposio di Topologia (Messina, 1964), 1965, pp. 33–37. | MR
[4] Čadek, M., Krčál, M., Matoušek, J., Sergeraert, F., Vokřínek, L., Wagner, U.: Computing all maps into a sphere. J. ACM 61 (2014), article no. 17. | DOI | MR | Zbl
[5] Čadek, M., Krčál, M., Matoušek, J., Vokřínek, L., Wagner, U.: Polynomial time computation of homotopy groups and Postnikov systems in fixed dimensions. SIAM J. Comput. 43 (2014), 1728–1780. | DOI | MR
[6] Čadek, M., Krčál, M., Vokřínek, L.: Algorithmic solvability of lifting extension problem. arXiv:1307.6444, 2013.
[7] Dugger, D.: A primer on homotopy colimits. http://math.uoregon.edu/~ddugger/hocolim.pdf, 2008.
[8] Dwyer, W., Hirschhorn, P., Kan, D., Smith, J.: Homotopy Limit Functors on Model Categories and Homotopical Categories. Math. Surveys Monogr., vol. 113, American Mathematical Society, Providence, 2004. | MR | Zbl
[9] Dwyer, W.G., Kan, D.M.: An obstruction theory for diagrams of simplicial sets. Nederl. Akad. Wetensch. Indag. Math. 46 (2) (1984), 139–146. | DOI | MR | Zbl
[10] Eilenberg, S., MacLane, S.: On the groups $H(\pi , n)$, I. Ann. of Math. (2) 58 (1953), 55–106. | MR | Zbl
[11] Eilenberg, S., MacLane, S.: On the groups $H(\pi , n)$, II. Ann. of Math. (2) 60 (1954), 49–139. | MR | Zbl
[12] Elmendorf, A.D.: Systems of fixed points sets. Trans. Amer. Math. Soc. 277 (1983), 275–284. | DOI | MR
[13] Filakovský, M., Vokřínek, L.: Are two maps homotopic? An algorithmic viewpoint. arXiv:1312.2337, 2013.
[14] Goerss, P.G., Jardine, J.F.: Simplicial homotopy theory. Birkhauser, Boston-Basel-Berlin, 1999. | MR | Zbl
[15] Gugenheim, V.K.A.M.: On the chain-complex of a fibration. Illinois J. Math. 16 (1972), 398–414. | MR | Zbl
[16] Heras, J.: Effective homology for the pushout of simplicial sets. Proceedings XII Encuentros de Algebra Computacional y Aplicaciones (EACA 2010), 2010, pp. 152–156.
[17] Isaacson, S.B.: Exercises on homotopy colimits. http://math.mit.edu/~mbehrens/TAGS/Isaacson_exer.pdf
[18] Krčál, M., Matoušek, J., Sergeraert, F.: Polynomial-time homology for simplicial Eilenberg-MacLane spaces. arXiv:1201.6222, 2012. | MR | Zbl
[19] May, J.P.: Simplicial Objects in Algebraic Topology. Chicago Lectures in Math., Univ. Chicago Press, 1992, 1992 reprint of 1967 original. | MR | Zbl
[20] May, J.P., Piacenza, R.J., Cole, M.: Equivariant homotopy and cohomology theory: Dedicated to the memory of Robert J. Piacenza. Providence, R.I.: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 1996. | MR
[21] Riehl, E.: Categorical Homotopy Theory. Cambridge University Press, 2014. | MR
[22] Rubio, J., Sergeraert, F.: Constructive Homological Algebra and Applications. Tech. report, Written in 2006 for a MAP Summer School at the University of Genova, 2012, arXiv:1208.3816v2.
[23] Shih, W.: Homologie des espaces fibrés. Publications Mathématiques de l'IHÉS 13 (1962), 5–87. | MR | Zbl
[24] Stephan, M.: On equivariant homotopy theory for model categories. arXiv:1308.0856, 2013.
Cité par Sources :