Uniqueness of the stereographic embedding
Archivum mathematicum, Tome 50 (2014) no. 5, pp. 265-271.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The standard conformal compactification of Euclidean space is the round sphere. We use conformal geodesics to give an elementary proof that this is the only possible conformal compactification.
DOI : 10.5817/AM2014-5-265
Classification : 53A30, 53C22
Keywords: stereographic; conformal circles; compactification
@article{10_5817_AM2014_5_265,
     author = {Eastwood, Michael},
     title = {Uniqueness of the stereographic embedding},
     journal = {Archivum mathematicum},
     pages = {265--271},
     publisher = {mathdoc},
     volume = {50},
     number = {5},
     year = {2014},
     doi = {10.5817/AM2014-5-265},
     mrnumber = {3303776},
     zbl = {06487011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-265/}
}
TY  - JOUR
AU  - Eastwood, Michael
TI  - Uniqueness of the stereographic embedding
JO  - Archivum mathematicum
PY  - 2014
SP  - 265
EP  - 271
VL  - 50
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-265/
DO  - 10.5817/AM2014-5-265
LA  - en
ID  - 10_5817_AM2014_5_265
ER  - 
%0 Journal Article
%A Eastwood, Michael
%T Uniqueness of the stereographic embedding
%J Archivum mathematicum
%D 2014
%P 265-271
%V 50
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-265/
%R 10.5817/AM2014-5-265
%G en
%F 10_5817_AM2014_5_265
Eastwood, Michael. Uniqueness of the stereographic embedding. Archivum mathematicum, Tome 50 (2014) no. 5, pp. 265-271. doi : 10.5817/AM2014-5-265. http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-265/

Cité par Sources :