Uniqueness of the stereographic embedding
Archivum mathematicum, Tome 50 (2014) no. 5, pp. 265-271
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The standard conformal compactification of Euclidean space is the round sphere. We use conformal geodesics to give an elementary proof that this is the only possible conformal compactification.
DOI :
10.5817/AM2014-5-265
Classification :
53A30, 53C22
Keywords: stereographic; conformal circles; compactification
Keywords: stereographic; conformal circles; compactification
@article{10_5817_AM2014_5_265,
author = {Eastwood, Michael},
title = {Uniqueness of the stereographic embedding},
journal = {Archivum mathematicum},
pages = {265--271},
publisher = {mathdoc},
volume = {50},
number = {5},
year = {2014},
doi = {10.5817/AM2014-5-265},
mrnumber = {3303776},
zbl = {06487011},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-265/}
}
Eastwood, Michael. Uniqueness of the stereographic embedding. Archivum mathematicum, Tome 50 (2014) no. 5, pp. 265-271. doi: 10.5817/AM2014-5-265
Cité par Sources :