Keywords: stereographic; conformal circles; compactification
@article{10_5817_AM2014_5_265,
author = {Eastwood, Michael},
title = {Uniqueness of the stereographic embedding},
journal = {Archivum mathematicum},
pages = {265--271},
year = {2014},
volume = {50},
number = {5},
doi = {10.5817/AM2014-5-265},
mrnumber = {3303776},
zbl = {06487011},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-265/}
}
Eastwood, Michael. Uniqueness of the stereographic embedding. Archivum mathematicum, Tome 50 (2014) no. 5, pp. 265-271. doi: 10.5817/AM2014-5-265
[1] Bailey, T.N., Eastwood, M.G.: Conformal circles and parametrizations of curves in conformal manifolds. Proc. Amer. Math. Soc. 108 (1990), 215–221. | DOI | MR | Zbl
[2] Cartan, É.: Les espaces à connexion conforme. Ann. Soc. Polon. Math. (1923), 171–221.
[3] Francès, C.: Rigidity at the boundary for conformal structures and other Cartan geometries. arXiv:0806:1008.
[4] Francès, C.: Sur le groupe d’automorphismes des géométries paraboliques de rang 1. Ann. Sci. École Norm. Sup. 40 (2007), 741–764. | MR | Zbl
[5] The Maple program: http://www.maplesoft.com</b> ple program: http://www.maplesoft.com
[6] Tod, K.P.: Some examples of the behaviour of conformal geodesics. J. Geom. Phys. 62 (2012), 1778–1792. | DOI | MR | Zbl
[7] Yano, K.: The Theory of Lie Derivatives and its Applications. North-Holland 1957. | MR | Zbl
Cité par Sources :