How many are affine connections with torsion
Archivum mathematicum, Tome 50 (2014) no. 5, pp. 257-264 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The question how many real analytic affine connections exist locally on a smooth manifold $M$ of dimension $n$ is studied. The families of general affine connections with torsion and with skew-symmetric Ricci tensor, or symmetric Ricci tensor, respectively, are described in terms of the number of arbitrary functions of $n$ variables.
The question how many real analytic affine connections exist locally on a smooth manifold $M$ of dimension $n$ is studied. The families of general affine connections with torsion and with skew-symmetric Ricci tensor, or symmetric Ricci tensor, respectively, are described in terms of the number of arbitrary functions of $n$ variables.
DOI : 10.5817/AM2014-5-257
Classification : 35A10, 35F35, 35G50, 35Q99
Keywords: affine connection; Ricci tensor; Cauchy-Kowalevski Theorem
@article{10_5817_AM2014_5_257,
     author = {Du\v{s}ek, Zden\v{e}k and Kowalski, Old\v{r}ich},
     title = {How many are affine connections with torsion},
     journal = {Archivum mathematicum},
     pages = {257--264},
     year = {2014},
     volume = {50},
     number = {5},
     doi = {10.5817/AM2014-5-257},
     mrnumber = {3303775},
     zbl = {06487010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-257/}
}
TY  - JOUR
AU  - Dušek, Zdeněk
AU  - Kowalski, Oldřich
TI  - How many are affine connections with torsion
JO  - Archivum mathematicum
PY  - 2014
SP  - 257
EP  - 264
VL  - 50
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-257/
DO  - 10.5817/AM2014-5-257
LA  - en
ID  - 10_5817_AM2014_5_257
ER  - 
%0 Journal Article
%A Dušek, Zdeněk
%A Kowalski, Oldřich
%T How many are affine connections with torsion
%J Archivum mathematicum
%D 2014
%P 257-264
%V 50
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-257/
%R 10.5817/AM2014-5-257
%G en
%F 10_5817_AM2014_5_257
Dušek, Zdeněk; Kowalski, Oldřich. How many are affine connections with torsion. Archivum mathematicum, Tome 50 (2014) no. 5, pp. 257-264. doi: 10.5817/AM2014-5-257

[1] Arias-Marco, T., Kowalski, O.: Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds. Monatsh. Math. 153 (2008), 1–18. | DOI | MR | Zbl

[2] Dušek, Z., Kowalski, O.: How many are torsion-less affine connections in general dimension. to appear in Adv. Geom.

[3] Egorov, Yu.V., Shubin, M.A.: Foundations of the Classical Theory of Partial Differential Equations. Springer-Verlag, Berlin, 1998. | MR | Zbl

[4] Eisenhart, L.P.: Fields of parallel vectors in a Riemannian geometry. Trans. Amer. Math. Soc. 27 (4) (1925), 563–573. | DOI | MR

[5] Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. American Mathematical Soc., 1978. | MR | Zbl

[6] Kobayashi, S., Nomizu, N.: Foundations of differential geometry I. Wiley Classics Library, 1996.

[7] Kowalevsky, S.: Zur Theorie der partiellen Differentialgleichung. J. Reine Angew. Math. 80 (1875), 1–32.

[8] Kowalski, O., Sekizawa, M.: Diagonalization of three-dimensional pseudo-Riemannian metrics. J. Geom. Phys. 74 (2013), 251–255. | DOI | MR | Zbl

[9] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and some Generalizations. Palacky University, Olomouc, 2009. | MR

[10] Nomizu, K., Sasaki, T.: Affine Differential Geometry. Cambridge University Press, 1994. | MR | Zbl

[11] Petrovsky, I.G.: Lectures on Partial Differential Equations. Dover Publications, Inc., New York, 1991. | MR

Cité par Sources :