How many are affine connections with torsion
Archivum mathematicum, Tome 50 (2014) no. 5, pp. 257-264
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The question how many real analytic affine connections exist locally on a smooth manifold $M$ of dimension $n$ is studied. The families of general affine connections with torsion and with skew-symmetric Ricci tensor, or symmetric Ricci tensor, respectively, are described in terms of the number of arbitrary functions of $n$ variables.
DOI :
10.5817/AM2014-5-257
Classification :
35A10, 35F35, 35G50, 35Q99
Keywords: affine connection; Ricci tensor; Cauchy-Kowalevski Theorem
Keywords: affine connection; Ricci tensor; Cauchy-Kowalevski Theorem
@article{10_5817_AM2014_5_257,
author = {Du\v{s}ek, Zden\v{e}k and Kowalski, Old\v{r}ich},
title = {How many are affine connections with torsion},
journal = {Archivum mathematicum},
pages = {257--264},
publisher = {mathdoc},
volume = {50},
number = {5},
year = {2014},
doi = {10.5817/AM2014-5-257},
mrnumber = {3303775},
zbl = {06487010},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-257/}
}
TY - JOUR AU - Dušek, Zdeněk AU - Kowalski, Oldřich TI - How many are affine connections with torsion JO - Archivum mathematicum PY - 2014 SP - 257 EP - 264 VL - 50 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-257/ DO - 10.5817/AM2014-5-257 LA - en ID - 10_5817_AM2014_5_257 ER -
Dušek, Zdeněk; Kowalski, Oldřich. How many are affine connections with torsion. Archivum mathematicum, Tome 50 (2014) no. 5, pp. 257-264. doi: 10.5817/AM2014-5-257
Cité par Sources :