How many are affine connections with torsion
Archivum mathematicum, Tome 50 (2014) no. 5, pp. 257-264.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The question how many real analytic affine connections exist locally on a smooth manifold $M$ of dimension $n$ is studied. The families of general affine connections with torsion and with skew-symmetric Ricci tensor, or symmetric Ricci tensor, respectively, are described in terms of the number of arbitrary functions of $n$ variables.
DOI : 10.5817/AM2014-5-257
Classification : 35A10, 35F35, 35G50, 35Q99
Keywords: affine connection; Ricci tensor; Cauchy-Kowalevski Theorem
@article{10_5817_AM2014_5_257,
     author = {Du\v{s}ek, Zden\v{e}k and Kowalski, Old\v{r}ich},
     title = {How many are affine connections with torsion},
     journal = {Archivum mathematicum},
     pages = {257--264},
     publisher = {mathdoc},
     volume = {50},
     number = {5},
     year = {2014},
     doi = {10.5817/AM2014-5-257},
     mrnumber = {3303775},
     zbl = {06487010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-257/}
}
TY  - JOUR
AU  - Dušek, Zdeněk
AU  - Kowalski, Oldřich
TI  - How many are affine connections with torsion
JO  - Archivum mathematicum
PY  - 2014
SP  - 257
EP  - 264
VL  - 50
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-257/
DO  - 10.5817/AM2014-5-257
LA  - en
ID  - 10_5817_AM2014_5_257
ER  - 
%0 Journal Article
%A Dušek, Zdeněk
%A Kowalski, Oldřich
%T How many are affine connections with torsion
%J Archivum mathematicum
%D 2014
%P 257-264
%V 50
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-257/
%R 10.5817/AM2014-5-257
%G en
%F 10_5817_AM2014_5_257
Dušek, Zdeněk; Kowalski, Oldřich. How many are affine connections with torsion. Archivum mathematicum, Tome 50 (2014) no. 5, pp. 257-264. doi : 10.5817/AM2014-5-257. http://geodesic.mathdoc.fr/articles/10.5817/AM2014-5-257/

Cité par Sources :