On conformal powers of the Dirac operator on spin manifolds
Archivum mathematicum, Tome 50 (2014) no. 4, pp. 237-253 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The well known conformal covariance of the Dirac operator acting on spinor fields does not extend to its powers in general. For odd powers of the Dirac operator we derive an algorithmic construction in terms of associated tractor bundles computing correction terms in order to achieve conformal covariance. These operators turn out to be formally (anti-) self-adjoint. Working out this algorithm we recover explicit formula for the conformal third and present a conformal fifth power of the Dirac operator. Finally, we will present polynomial structures for the first examples of conformal powers in terms of first order differential operators acting on the spinor bundle.
The well known conformal covariance of the Dirac operator acting on spinor fields does not extend to its powers in general. For odd powers of the Dirac operator we derive an algorithmic construction in terms of associated tractor bundles computing correction terms in order to achieve conformal covariance. These operators turn out to be formally (anti-) self-adjoint. Working out this algorithm we recover explicit formula for the conformal third and present a conformal fifth power of the Dirac operator. Finally, we will present polynomial structures for the first examples of conformal powers in terms of first order differential operators acting on the spinor bundle.
DOI : 10.5817/AM2014-4-237
Classification : 53A30, 53C27
Keywords: conformal and spin geometry; conformal powers of the Dirac operator; conformal covariance; tractor bundle; tractor D-operator
@article{10_5817_AM2014_4_237,
     author = {Fischmann, Matthias},
     title = {On conformal powers of the {Dirac} operator on spin manifolds},
     journal = {Archivum mathematicum},
     pages = {237--253},
     year = {2014},
     volume = {50},
     number = {4},
     doi = {10.5817/AM2014-4-237},
     mrnumber = {3291852},
     zbl = {06487009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-4-237/}
}
TY  - JOUR
AU  - Fischmann, Matthias
TI  - On conformal powers of the Dirac operator on spin manifolds
JO  - Archivum mathematicum
PY  - 2014
SP  - 237
EP  - 253
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-4-237/
DO  - 10.5817/AM2014-4-237
LA  - en
ID  - 10_5817_AM2014_4_237
ER  - 
%0 Journal Article
%A Fischmann, Matthias
%T On conformal powers of the Dirac operator on spin manifolds
%J Archivum mathematicum
%D 2014
%P 237-253
%V 50
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-4-237/
%R 10.5817/AM2014-4-237
%G en
%F 10_5817_AM2014_4_237
Fischmann, Matthias. On conformal powers of the Dirac operator on spin manifolds. Archivum mathematicum, Tome 50 (2014) no. 4, pp. 237-253. doi: 10.5817/AM2014-4-237

[1] Bailey, T.N., Eastwood, M.G., Gover, A.R.: Thomas’s structure bundle for conformal, projective and related structures. Rocky Mountain J. Math. 24 (4) (1994), 1191–1217. | DOI | MR | Zbl

[2] Branson, T.: Conformally covariant equations on differential forms. Comm. Partial Differential Equation 7 (4) (1982), 393–431. | DOI | MR | Zbl

[3] Branson, T.: Conformal structure and spin geometry. Dirac Operators: Yesterday and Today, International Press, 2005. | MR | Zbl

[4] Čap, A., Slovák, J.: Parabolic Geometries: Background and General Theory. vol. 1, American Mathematical Society, 2009. | MR

[5] Eastwood, M.G., Rice, J.W.: Conformally invariant differential operators on Minkowski space and their curved analogues. Comm. Math. Phys. 109 (2) (1987), 207–228. | MR | Zbl

[6] Eelbode, D., Souček, V.: Conformally invariant powers of the Dirac operator in Clifford analysis. Math. Methods Appl. Sci. 33 (13) (2010), 1558–1570. | MR | Zbl

[7] Fefferman, C., Graham, C.R.: Conformal invariants. The mathematical heritage of Élie Cartan (Lyon, 1984). yon, 1984), Astérisque, Numéro Hors Série (1985), 95–116. | MR

[8] Fefferman, C., Graham, C.R.: The ambient metric. Annals of Mathematics Studies, vol. 178, Princeton University Press, Princeton, NJ, 2012. | MR | Zbl

[9] Fegan, H.D.: Conformally invariant first order differential operators. Quart. J. Math. Oxford (2) 27 (107) (1976), 371–378. | DOI | MR | Zbl

[10] Fischmann, M.: Conformally covariant differential operators acting on spinor bundles and related conformal covariants. Ph.D. thesis, Humboldt Universität zu Berlin, 2013, http://edoc.hu-berlin.de/dissertationen/fischmann-matthias-2013-03-04/PDF/fischmann.pdf

[11] Fischmann, M., Krattenthaler, C., Somberg, P.: On conformal powers of the Dirac operator on Einstein manifolds. ArXiv e-prints (2014), | arXiv | MR

[12] Gover, A.R.: Laplacian operators and $Q$-curvature on conformally Einstein manifolds. Math. Anal. 336 (2) (2006), 311–334. | DOI | MR | Zbl

[13] Gover, A.R., Hirachi, K.: Conformally invariant powers of the Laplacian - A complete non-existence theorem. J. Amer. Math. Soc. 14 (2) (2004), 389–405. | DOI | MR

[14] Gover, A.R., Peterson, L.J.: Conformally invariant powers of the Laplacian, $Q$-curvature, and tractor calculus. Comm. Math. Phys. 235 (2) (2003), 339–378. | DOI | MR | Zbl

[15] Graham, C.R., Jenne, R.W., Mason, L., Sparling, G.: Conformally invariant powers of the Laplacian, I: Existence. J. London Math. Soc. (2) 2 (3) (1992), 557–565. | MR | Zbl

[16] Graham, C.R., Zworski, M.: Scattering matrix in conformal geometry. Invent. Math. 152 (2003), 89–118. | DOI | MR | Zbl

[17] Guillarmou, C., Moroianu, S., Park, J.: Bergman and Calderón projectors for Dirac operators. J. Geom. Anal. (2012), 1–39, | DOI

[18] Hitchin, N.J.: Harmonic spinors. Adv. Math. 14 (1) (1974), 1–55. | DOI | MR | Zbl

[19] Holland, J., Sparling, G.: Conformally invariant powers of the ambient Dirac operator. ArXiv e-prints (2001), | arXiv

[20] Juhl, A.: On conformally covariant powers of the Laplacian. ArXiv e-prints (2010), | arXiv

[21] Juhl, A.: Explicit formulas for GJMS-operators and $Q$-curvatures. Geom. Funct. Anal. 23 (2013), 1278–1370, | arXiv | DOI | MR | Zbl

[22] Kosmann, Y.: Propriétés des dérivations de l’algèbre des tenseurs-spineurs. C. R. Acad. Sci. Paris Sér. A 264 (1967), 355–358. | MR

[23] Ørsted, B.: A note on the conformal quasi-invariance of the Laplacian on a pseudo-Riemannian manifold. Lett. Math. Phys. 1 (3) (1976), 183–186. | DOI | MR | Zbl

[24] Šilhan, J.: Invariant differential operators in conformal geometry. Ph.D. thesis, University of Auckland, 2006.

[25] Slovák, J.: Natural operators on conformal manifolds. Ph.D. thesis, Masaryk University Brno, 1993. | MR | Zbl

[26] Thomas, T.Y.: On conformal geometry. Proc. Nat. Acad. Sci. U.S.A. 12 (5) (1926), 352–359. | DOI

[27] Yamabe, H.: On a deformation of Riemannian structures on compact manifolds. Osaka J. Math. 12 (1) (1960), 21–37. | MR | Zbl

Cité par Sources :