Keywords: conformal and spin geometry; conformal powers of the Dirac operator; conformal covariance; tractor bundle; tractor D-operator
@article{10_5817_AM2014_4_237,
author = {Fischmann, Matthias},
title = {On conformal powers of the {Dirac} operator on spin manifolds},
journal = {Archivum mathematicum},
pages = {237--253},
year = {2014},
volume = {50},
number = {4},
doi = {10.5817/AM2014-4-237},
mrnumber = {3291852},
zbl = {06487009},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-4-237/}
}
Fischmann, Matthias. On conformal powers of the Dirac operator on spin manifolds. Archivum mathematicum, Tome 50 (2014) no. 4, pp. 237-253. doi: 10.5817/AM2014-4-237
[1] Bailey, T.N., Eastwood, M.G., Gover, A.R.: Thomas’s structure bundle for conformal, projective and related structures. Rocky Mountain J. Math. 24 (4) (1994), 1191–1217. | DOI | MR | Zbl
[2] Branson, T.: Conformally covariant equations on differential forms. Comm. Partial Differential Equation 7 (4) (1982), 393–431. | DOI | MR | Zbl
[3] Branson, T.: Conformal structure and spin geometry. Dirac Operators: Yesterday and Today, International Press, 2005. | MR | Zbl
[4] Čap, A., Slovák, J.: Parabolic Geometries: Background and General Theory. vol. 1, American Mathematical Society, 2009. | MR
[5] Eastwood, M.G., Rice, J.W.: Conformally invariant differential operators on Minkowski space and their curved analogues. Comm. Math. Phys. 109 (2) (1987), 207–228. | MR | Zbl
[6] Eelbode, D., Souček, V.: Conformally invariant powers of the Dirac operator in Clifford analysis. Math. Methods Appl. Sci. 33 (13) (2010), 1558–1570. | MR | Zbl
[7] Fefferman, C., Graham, C.R.: Conformal invariants. The mathematical heritage of Élie Cartan (Lyon, 1984). yon, 1984), Astérisque, Numéro Hors Série (1985), 95–116. | MR
[8] Fefferman, C., Graham, C.R.: The ambient metric. Annals of Mathematics Studies, vol. 178, Princeton University Press, Princeton, NJ, 2012. | MR | Zbl
[9] Fegan, H.D.: Conformally invariant first order differential operators. Quart. J. Math. Oxford (2) 27 (107) (1976), 371–378. | DOI | MR | Zbl
[10] Fischmann, M.: Conformally covariant differential operators acting on spinor bundles and related conformal covariants. Ph.D. thesis, Humboldt Universität zu Berlin, 2013, http://edoc.hu-berlin.de/dissertationen/fischmann-matthias-2013-03-04/PDF/fischmann.pdf
[11] Fischmann, M., Krattenthaler, C., Somberg, P.: On conformal powers of the Dirac operator on Einstein manifolds. ArXiv e-prints (2014), | arXiv | MR
[12] Gover, A.R.: Laplacian operators and $Q$-curvature on conformally Einstein manifolds. Math. Anal. 336 (2) (2006), 311–334. | DOI | MR | Zbl
[13] Gover, A.R., Hirachi, K.: Conformally invariant powers of the Laplacian - A complete non-existence theorem. J. Amer. Math. Soc. 14 (2) (2004), 389–405. | DOI | MR
[14] Gover, A.R., Peterson, L.J.: Conformally invariant powers of the Laplacian, $Q$-curvature, and tractor calculus. Comm. Math. Phys. 235 (2) (2003), 339–378. | DOI | MR | Zbl
[15] Graham, C.R., Jenne, R.W., Mason, L., Sparling, G.: Conformally invariant powers of the Laplacian, I: Existence. J. London Math. Soc. (2) 2 (3) (1992), 557–565. | MR | Zbl
[16] Graham, C.R., Zworski, M.: Scattering matrix in conformal geometry. Invent. Math. 152 (2003), 89–118. | DOI | MR | Zbl
[17] Guillarmou, C., Moroianu, S., Park, J.: Bergman and Calderón projectors for Dirac operators. J. Geom. Anal. (2012), 1–39, | DOI
[18] Hitchin, N.J.: Harmonic spinors. Adv. Math. 14 (1) (1974), 1–55. | DOI | MR | Zbl
[19] Holland, J., Sparling, G.: Conformally invariant powers of the ambient Dirac operator. ArXiv e-prints (2001), | arXiv
[20] Juhl, A.: On conformally covariant powers of the Laplacian. ArXiv e-prints (2010), | arXiv
[21] Juhl, A.: Explicit formulas for GJMS-operators and $Q$-curvatures. Geom. Funct. Anal. 23 (2013), 1278–1370, | arXiv | DOI | MR | Zbl
[22] Kosmann, Y.: Propriétés des dérivations de l’algèbre des tenseurs-spineurs. C. R. Acad. Sci. Paris Sér. A 264 (1967), 355–358. | MR
[23] Ørsted, B.: A note on the conformal quasi-invariance of the Laplacian on a pseudo-Riemannian manifold. Lett. Math. Phys. 1 (3) (1976), 183–186. | DOI | MR | Zbl
[24] Šilhan, J.: Invariant differential operators in conformal geometry. Ph.D. thesis, University of Auckland, 2006.
[25] Slovák, J.: Natural operators on conformal manifolds. Ph.D. thesis, Masaryk University Brno, 1993. | MR | Zbl
[26] Thomas, T.Y.: On conformal geometry. Proc. Nat. Acad. Sci. U.S.A. 12 (5) (1926), 352–359. | DOI
[27] Yamabe, H.: On a deformation of Riemannian structures on compact manifolds. Osaka J. Math. 12 (1) (1960), 21–37. | MR | Zbl
Cité par Sources :