Evolutes and isoperimetric deficit in two-dimensional spaces of constant curvature
Archivum mathematicum, Tome 50 (2014) no. 4, pp. 219-236 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We relate the total curvature and the isoperimetric deficit of a curve $\gamma $ in a two-dimensional space of constant curvature with the area enclosed by the evolute of $\gamma $. We provide also a Gauss-Bonnet theorem for a special class of evolutes.
We relate the total curvature and the isoperimetric deficit of a curve $\gamma $ in a two-dimensional space of constant curvature with the area enclosed by the evolute of $\gamma $. We provide also a Gauss-Bonnet theorem for a special class of evolutes.
DOI : 10.5817/AM2014-4-219
Classification : 52A10, 52A55, 53A04
Keywords: curvature; evolutes; isoperimetric deficit; Gauss-Bonnet
@article{10_5817_AM2014_4_219,
     author = {Cuf{\'\i}, Juli\`a and Revent\'os, Agust{\'\i}},
     title = {Evolutes and isoperimetric deficit in two-dimensional spaces of constant curvature},
     journal = {Archivum mathematicum},
     pages = {219--236},
     year = {2014},
     volume = {50},
     number = {4},
     doi = {10.5817/AM2014-4-219},
     mrnumber = {3291851},
     zbl = {06487008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-4-219/}
}
TY  - JOUR
AU  - Cufí, Julià
AU  - Reventós, Agustí
TI  - Evolutes and isoperimetric deficit in two-dimensional spaces of constant curvature
JO  - Archivum mathematicum
PY  - 2014
SP  - 219
EP  - 236
VL  - 50
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-4-219/
DO  - 10.5817/AM2014-4-219
LA  - en
ID  - 10_5817_AM2014_4_219
ER  - 
%0 Journal Article
%A Cufí, Julià
%A Reventós, Agustí
%T Evolutes and isoperimetric deficit in two-dimensional spaces of constant curvature
%J Archivum mathematicum
%D 2014
%P 219-236
%V 50
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-4-219/
%R 10.5817/AM2014-4-219
%G en
%F 10_5817_AM2014_4_219
Cufí, Julià; Reventós, Agustí. Evolutes and isoperimetric deficit in two-dimensional spaces of constant curvature. Archivum mathematicum, Tome 50 (2014) no. 4, pp. 219-236. doi: 10.5817/AM2014-4-219

[1] Bruna, J., Cufí, J.: Complex Analysis. European Mathematical Society, 2013. | MR

[2] Chern, S. S.: Curves and surfaces in Euclidean space. Studies in Global Geometry and Analysis 4 (1967), 16–56. | MR

[3] Escudero, C. A., Reventós, A.: An interesting property of the evolute. Amer. Math. Monthly 114 (7) (2007), 623–628. | MR | Zbl

[4] Escudero, C. A., Reventós, A., Solanes, G.: Focal sets in two-dimensional space forms. Pacific J. Math. 233 (2007), 309–320. | DOI | MR | Zbl

[5] Fenchel, W.: On the differential geometry of closed space curves. Bull. Amer. Math. Soc. (N.S.) 57 (1951), 44–54. | DOI | MR | Zbl

[6] Hurwitz, A.: Sur quelques applications géométriques des séries de Fourier. Annales scientifiques de l' É.N.S. 19 (1902), 357–408. | MR

[7] Martinez-Maure, Y.: Sommets et normales concourantes des courbes convexes de largeur constante et singularités des hérissons. Arch. Math. 79 (2002), 489–498. | DOI | MR | Zbl

[9] Santaló, L. A.: Integral Geometry and Geometric Probability. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976, With a foreword by Mark Kac, Encyclopedia of Mathematics and its Applications, Vol. 1. | MR | Zbl

[10] Spivak, M.: A Comprehensive Introduction to Differential Geometry. Publish or Perish, Inc. Berkeley, 1979, 2a ed., 5 v. | Zbl

Cité par Sources :