Keywords: 2-step nilpotent Lie groups; free nilpotent groups; left-invariant Lorentzian metrics; Ricci-flatness
@article{10_5817_AM2014_3_171,
author = {Guediri, Mohammed and Bin-Asfour, Mona},
title = {Ricci-flat left-invariant {Lorentzian} metrics on 2-step nilpotent {Lie} groups},
journal = {Archivum mathematicum},
pages = {171--192},
year = {2014},
volume = {50},
number = {3},
doi = {10.5817/AM2014-3-171},
mrnumber = {3263659},
zbl = {06487005},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-3-171/}
}
TY - JOUR AU - Guediri, Mohammed AU - Bin-Asfour, Mona TI - Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups JO - Archivum mathematicum PY - 2014 SP - 171 EP - 192 VL - 50 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-3-171/ DO - 10.5817/AM2014-3-171 LA - en ID - 10_5817_AM2014_3_171 ER -
%0 Journal Article %A Guediri, Mohammed %A Bin-Asfour, Mona %T Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups %J Archivum mathematicum %D 2014 %P 171-192 %V 50 %N 3 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-3-171/ %R 10.5817/AM2014-3-171 %G en %F 10_5817_AM2014_3_171
Guediri, Mohammed; Bin-Asfour, Mona. Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups. Archivum mathematicum, Tome 50 (2014) no. 3, pp. 171-192. doi: 10.5817/AM2014-3-171
[1] Alekseevskii, D., Kimelfeld, B.: Structure of homogeneous Riemannian spaces with zero Ricci curvature. Funct. Anal. Appl. 9 (1975), 97–102. | DOI | MR
[2] Asfour, M.: Curvatures of left-invariant Lorentzian metrics on solvable Lie groups. Ph.D. thesis, in preparation.
[3] Aubert, A., Medina, A.: Groupes de Lie pseudo-Riemanniens plats. Tôhoku Math. J. (2) 55 (2003), no. 4, 487–506. | DOI | MR | Zbl
[4] Bérard-Bergery, L.: Sur la courbure des métriques riemanniennes invariantes des groupes de Lie et des espaces homogènes. Ann. Sci. École Norm. Sup. (4) 11 (1978), 543–576. | MR | Zbl
[5] Boucetta, M.: Ricci flat left invariant pseudo-Riemannian metrics on 2-step nilpotent Lie groups. arXiv:0910.2563v1[math.DG], 2009.
[6] Boucetta, M., Lebzioui, H.: Nonunimodular Lorentzian flat Lie algebras. arXiv:1401.0950v1 [math.DG], 2014.
[7] Cordero, L., Parker, P.: Pseudo-Riemannian 2-step nilpotent Lie group. arXiv:math/9905188 [math.DG], 1999.
[8] Eberlein, P.: Geometry of 2-step nilpotent groups with a left-invariant metric. Ann. Sci. École Norm. Sup. (4) 27 (1994), 611–660. | MR | Zbl
[9] Eberlein, P.: The moduli space of 2-step nilpotent Lie algebras of type $(p,q)$. Contemp. Math. 332 (2003), 37–72. | DOI | MR | Zbl
[10] Eberlein, P.: Geometry of 2-step nilpotent Lie groups. Modern Dynamical Systems, Cambridge University Press, 2004, pp. 67–101. | MR | Zbl
[11] Grunewald, F., Margulis, G.: Transitive and quasitransitive actions of affine groups preserving a generalized Lorentz structure. J. Geom. Phys. (1988), 493–531. | DOI | MR | Zbl
[12] Guediri, M.: Sur la completude des pseudo-metriques invariantes a gauche sur les groupes de Lie nilpotents. Rend. Sem. Mat. Univ. Politec. Torino 52 (1994), 371–376. | MR | Zbl
[13] Guediri, M.: Lorentz geometry of 2-step nilpotent Lie groups. Geom. Dedicata 100 (2003), 11–51. | DOI | MR | Zbl
[14] Guediri, M.: On the nonexistence of closed timelike geodesics in flat lorentz 2-step nilmanifolds. Trans. Amer. Math. Soc. 355 (2003), 775–786. | DOI | MR | Zbl
[15] Guediri, M.: Compact flat spacetimes. Differential Geom. Appl. 21 (2004), 283–295. | DOI | MR | Zbl
[16] Kaplan, A.: Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Amer. Math. Soc. 258 (1980), 147–153. | DOI | MR | Zbl
[17] Kaplan, A.: Riemannian nilmanifolds attached to Clifford modules. Geom. Dedicata 11 (1981), 127–136. | DOI | MR | Zbl
[18] Kaplan, A.: On the geometry of groups of Heisenberg type. Bull. Lond. Math. Soc. 15 (1983), 35–42. | DOI | MR | Zbl
[19] Milnor, J.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21 (1976), 293–329. | DOI | MR | Zbl
[20] Nomizu, K.: Left-invariant Lorentz metrics on Lie groups. Osaka J. Math. 16 (1979), 143–150. | MR | Zbl
[21] O’Neill, B.: Semi-Riemannian geometry with applications to relativity. Academic Press, New York, 1983. | MR
[22] Ovando, G.: Free nilpotent Lie algebras admitting ad-invariant metrics. arXiv:1104.4773v2 [math.RA], 2011.
Cité par Sources :