Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups
Archivum mathematicum, Tome 50 (2014) no. 3, pp. 171-192
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The purpose of this paper is to investigate Ricci-flatness of left-invariant Lorentzian metrics on 2-step nilpotent Lie groups. We first show that if $\left\langle \, ,\right\rangle $ is a Ricci-flat left-invariant Lorentzian metric on a 2-step nilpotent Lie group $N$, then the restriction of $\left\langle \, ,\right\rangle $ to the center of the Lie algebra of $N$ is degenerate. We then characterize the 2-step nilpotent Lie groups which can be endowed with a Ricci-flat left-invariant Lorentzian metric, and we deduce from this that a Heisenberg Lie group $H_{2n+1}$ can be endowed with Ricci-flat left-invariant Lorentzian metric if and only if $n=1$. We also show that the free 2-step nilpotent Lie group on $m$ generators $N_{m,2}$ admits a Ricci-flat left-invariant Lorentzian metric if and only if $m=2$ or $m=3$, and we determine all Ricci-flat left-invariant Lorentzian metrics on the free $2$-step nilpotent Lie group on $3$ generators $N_{3,2}$.
The purpose of this paper is to investigate Ricci-flatness of left-invariant Lorentzian metrics on 2-step nilpotent Lie groups. We first show that if $\left\langle \, ,\right\rangle $ is a Ricci-flat left-invariant Lorentzian metric on a 2-step nilpotent Lie group $N$, then the restriction of $\left\langle \, ,\right\rangle $ to the center of the Lie algebra of $N$ is degenerate. We then characterize the 2-step nilpotent Lie groups which can be endowed with a Ricci-flat left-invariant Lorentzian metric, and we deduce from this that a Heisenberg Lie group $H_{2n+1}$ can be endowed with Ricci-flat left-invariant Lorentzian metric if and only if $n=1$. We also show that the free 2-step nilpotent Lie group on $m$ generators $N_{m,2}$ admits a Ricci-flat left-invariant Lorentzian metric if and only if $m=2$ or $m=3$, and we determine all Ricci-flat left-invariant Lorentzian metrics on the free $2$-step nilpotent Lie group on $3$ generators $N_{3,2}$.
DOI :
10.5817/AM2014-3-171
Classification :
22E25, 53C25, 53C50
Keywords: 2-step nilpotent Lie groups; free nilpotent groups; left-invariant Lorentzian metrics; Ricci-flatness
Keywords: 2-step nilpotent Lie groups; free nilpotent groups; left-invariant Lorentzian metrics; Ricci-flatness
@article{10_5817_AM2014_3_171,
author = {Guediri, Mohammed and Bin-Asfour, Mona},
title = {Ricci-flat left-invariant {Lorentzian} metrics on 2-step nilpotent {Lie} groups},
journal = {Archivum mathematicum},
pages = {171--192},
year = {2014},
volume = {50},
number = {3},
doi = {10.5817/AM2014-3-171},
mrnumber = {3263659},
zbl = {06487005},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-3-171/}
}
TY - JOUR AU - Guediri, Mohammed AU - Bin-Asfour, Mona TI - Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups JO - Archivum mathematicum PY - 2014 SP - 171 EP - 192 VL - 50 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-3-171/ DO - 10.5817/AM2014-3-171 LA - en ID - 10_5817_AM2014_3_171 ER -
%0 Journal Article %A Guediri, Mohammed %A Bin-Asfour, Mona %T Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups %J Archivum mathematicum %D 2014 %P 171-192 %V 50 %N 3 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-3-171/ %R 10.5817/AM2014-3-171 %G en %F 10_5817_AM2014_3_171
Guediri, Mohammed; Bin-Asfour, Mona. Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups. Archivum mathematicum, Tome 50 (2014) no. 3, pp. 171-192. doi: 10.5817/AM2014-3-171
Cité par Sources :