Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups
Archivum mathematicum, Tome 50 (2014) no. 3, pp. 171-192 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The purpose of this paper is to investigate Ricci-flatness of left-invariant Lorentzian metrics on 2-step nilpotent Lie groups. We first show that if $\left\langle \, ,\right\rangle $ is a Ricci-flat left-invariant Lorentzian metric on a 2-step nilpotent Lie group $N$, then the restriction of $\left\langle \, ,\right\rangle $ to the center of the Lie algebra of $N$ is degenerate. We then characterize the 2-step nilpotent Lie groups which can be endowed with a Ricci-flat left-invariant Lorentzian metric, and we deduce from this that a Heisenberg Lie group $H_{2n+1}$ can be endowed with Ricci-flat left-invariant Lorentzian metric if and only if $n=1$. We also show that the free 2-step nilpotent Lie group on $m$ generators $N_{m,2}$ admits a Ricci-flat left-invariant Lorentzian metric if and only if $m=2$ or $m=3$, and we determine all Ricci-flat left-invariant Lorentzian metrics on the free $2$-step nilpotent Lie group on $3$ generators $N_{3,2}$.
The purpose of this paper is to investigate Ricci-flatness of left-invariant Lorentzian metrics on 2-step nilpotent Lie groups. We first show that if $\left\langle \, ,\right\rangle $ is a Ricci-flat left-invariant Lorentzian metric on a 2-step nilpotent Lie group $N$, then the restriction of $\left\langle \, ,\right\rangle $ to the center of the Lie algebra of $N$ is degenerate. We then characterize the 2-step nilpotent Lie groups which can be endowed with a Ricci-flat left-invariant Lorentzian metric, and we deduce from this that a Heisenberg Lie group $H_{2n+1}$ can be endowed with Ricci-flat left-invariant Lorentzian metric if and only if $n=1$. We also show that the free 2-step nilpotent Lie group on $m$ generators $N_{m,2}$ admits a Ricci-flat left-invariant Lorentzian metric if and only if $m=2$ or $m=3$, and we determine all Ricci-flat left-invariant Lorentzian metrics on the free $2$-step nilpotent Lie group on $3$ generators $N_{3,2}$.
DOI : 10.5817/AM2014-3-171
Classification : 22E25, 53C25, 53C50
Keywords: 2-step nilpotent Lie groups; free nilpotent groups; left-invariant Lorentzian metrics; Ricci-flatness
@article{10_5817_AM2014_3_171,
     author = {Guediri, Mohammed and Bin-Asfour, Mona},
     title = {Ricci-flat left-invariant {Lorentzian} metrics on 2-step nilpotent {Lie} groups},
     journal = {Archivum mathematicum},
     pages = {171--192},
     year = {2014},
     volume = {50},
     number = {3},
     doi = {10.5817/AM2014-3-171},
     mrnumber = {3263659},
     zbl = {06487005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-3-171/}
}
TY  - JOUR
AU  - Guediri, Mohammed
AU  - Bin-Asfour, Mona
TI  - Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups
JO  - Archivum mathematicum
PY  - 2014
SP  - 171
EP  - 192
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-3-171/
DO  - 10.5817/AM2014-3-171
LA  - en
ID  - 10_5817_AM2014_3_171
ER  - 
%0 Journal Article
%A Guediri, Mohammed
%A Bin-Asfour, Mona
%T Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups
%J Archivum mathematicum
%D 2014
%P 171-192
%V 50
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-3-171/
%R 10.5817/AM2014-3-171
%G en
%F 10_5817_AM2014_3_171
Guediri, Mohammed; Bin-Asfour, Mona. Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups. Archivum mathematicum, Tome 50 (2014) no. 3, pp. 171-192. doi: 10.5817/AM2014-3-171

[1] Alekseevskii, D., Kimelfeld, B.: Structure of homogeneous Riemannian spaces with zero Ricci curvature. Funct. Anal. Appl. 9 (1975), 97–102. | DOI | MR

[2] Asfour, M.: Curvatures of left-invariant Lorentzian metrics on solvable Lie groups. Ph.D. thesis, in preparation.

[3] Aubert, A., Medina, A.: Groupes de Lie pseudo-Riemanniens plats. Tôhoku Math. J. (2) 55 (2003), no. 4, 487–506. | DOI | MR | Zbl

[4] Bérard-Bergery, L.: Sur la courbure des métriques riemanniennes invariantes des groupes de Lie et des espaces homogènes. Ann. Sci. École Norm. Sup. (4) 11 (1978), 543–576. | MR | Zbl

[5] Boucetta, M.: Ricci flat left invariant pseudo-Riemannian metrics on 2-step nilpotent Lie groups. arXiv:0910.2563v1[math.DG], 2009.

[6] Boucetta, M., Lebzioui, H.: Nonunimodular Lorentzian flat Lie algebras. arXiv:1401.0950v1 [math.DG], 2014.

[7] Cordero, L., Parker, P.: Pseudo-Riemannian 2-step nilpotent Lie group. arXiv:math/9905188 [math.DG], 1999.

[8] Eberlein, P.: Geometry of 2-step nilpotent groups with a left-invariant metric. Ann. Sci. École Norm. Sup. (4) 27 (1994), 611–660. | MR | Zbl

[9] Eberlein, P.: The moduli space of 2-step nilpotent Lie algebras of type $(p,q)$. Contemp. Math. 332 (2003), 37–72. | DOI | MR | Zbl

[10] Eberlein, P.: Geometry of 2-step nilpotent Lie groups. Modern Dynamical Systems, Cambridge University Press, 2004, pp. 67–101. | MR | Zbl

[11] Grunewald, F., Margulis, G.: Transitive and quasitransitive actions of affine groups preserving a generalized Lorentz structure. J. Geom. Phys. (1988), 493–531. | DOI | MR | Zbl

[12] Guediri, M.: Sur la completude des pseudo-metriques invariantes a gauche sur les groupes de Lie nilpotents. Rend. Sem. Mat. Univ. Politec. Torino 52 (1994), 371–376. | MR | Zbl

[13] Guediri, M.: Lorentz geometry of 2-step nilpotent Lie groups. Geom. Dedicata 100 (2003), 11–51. | DOI | MR | Zbl

[14] Guediri, M.: On the nonexistence of closed timelike geodesics in flat lorentz 2-step nilmanifolds. Trans. Amer. Math. Soc. 355 (2003), 775–786. | DOI | MR | Zbl

[15] Guediri, M.: Compact flat spacetimes. Differential Geom. Appl. 21 (2004), 283–295. | DOI | MR | Zbl

[16] Kaplan, A.: Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Amer. Math. Soc. 258 (1980), 147–153. | DOI | MR | Zbl

[17] Kaplan, A.: Riemannian nilmanifolds attached to Clifford modules. Geom. Dedicata 11 (1981), 127–136. | DOI | MR | Zbl

[18] Kaplan, A.: On the geometry of groups of Heisenberg type. Bull. Lond. Math. Soc. 15 (1983), 35–42. | DOI | MR | Zbl

[19] Milnor, J.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21 (1976), 293–329. | DOI | MR | Zbl

[20] Nomizu, K.: Left-invariant Lorentz metrics on Lie groups. Osaka J. Math. 16 (1979), 143–150. | MR | Zbl

[21] O’Neill, B.: Semi-Riemannian geometry with applications to relativity. Academic Press, New York, 1983. | MR

[22] Ovando, G.: Free nilpotent Lie algebras admitting ad-invariant metrics. arXiv:1104.4773v2 [math.RA], 2011.

Cité par Sources :