Keywords: projectable vector field; Weil bundle; product preserving gauge bundle functor; lift
@article{10_5817_AM2014_3_161,
author = {Ntyam, A. and Wankap Nono, G. F. and Ndombol, Bitjong},
title = {On lifts of some projectable vector fields associated to a product preserving gauge bundle functor on vector bundles},
journal = {Archivum mathematicum},
pages = {161--169},
year = {2014},
volume = {50},
number = {3},
doi = {10.5817/AM2014-3-161},
mrnumber = {3263658},
zbl = {06487004},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-3-161/}
}
TY - JOUR AU - Ntyam, A. AU - Wankap Nono, G. F. AU - Ndombol, Bitjong TI - On lifts of some projectable vector fields associated to a product preserving gauge bundle functor on vector bundles JO - Archivum mathematicum PY - 2014 SP - 161 EP - 169 VL - 50 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-3-161/ DO - 10.5817/AM2014-3-161 LA - en ID - 10_5817_AM2014_3_161 ER -
%0 Journal Article %A Ntyam, A. %A Wankap Nono, G. F. %A Ndombol, Bitjong %T On lifts of some projectable vector fields associated to a product preserving gauge bundle functor on vector bundles %J Archivum mathematicum %D 2014 %P 161-169 %V 50 %N 3 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-3-161/ %R 10.5817/AM2014-3-161 %G en %F 10_5817_AM2014_3_161
Ntyam, A.; Wankap Nono, G. F.; Ndombol, Bitjong. On lifts of some projectable vector fields associated to a product preserving gauge bundle functor on vector bundles. Archivum mathematicum, Tome 50 (2014) no. 3, pp. 161-169. doi: 10.5817/AM2014-3-161
[1] Cordero, L.A., Dobson, C.T.J., De León, M.: Differential geometry of frame bundles. Kluwer Academic Publishers, 1989. | MR
[2] Gancarzewicz, J., Mikulski, W.M., Pogoda, Z.: Lifts of some tensor fields and connections to product preserving functors. Nagoya Math. J. 135 (1994), 1–14. | MR | Zbl
[3] Kolář, I.: Covariant approach to natural transformations of Weil bundles. CMUC 27 (1986), 723–729. | MR
[4] Kolář, I.: On the natural operators on vector fields. Ann. Global Anal. Geom. 6 (1988), 119–117. | DOI | MR | Zbl
[5] Kolář, I., Modugno, M.: Torsions of connections on some natural bundles. Differential Geom. Appl. 2 (1992), 1–16. | DOI | MR | Zbl
[6] Kolář, I., Slovák, J., Michor, P.W.: Natural operations in differential geometry. Springer-Verlag Berlin–Heidelberg, 1993. | MR | Zbl
[7] Mikulski, W.M.: Product preserving gauge bundle functors on vector bundles. Colloq. Math. 90 (2001), no. 2, 277–285. | DOI | MR | Zbl
[8] Ntyam, A., Mba, A.: On natural vector bundle morphisms $T^{A}\circ \otimes _{s}^{q}\rightarrow \otimes _{s}^{q}\circ T^{A}$ over $\operatorname{id}_{T^{A}}$. Ann. Polon. Math. 96 (2009), no. 3, 295–301. | MR
[9] Ntyam, A., Wouafo, K.J.: New versions of curvature and torsion formulas for the complete lifting of a linear connection to Weil bundles. Ann. Polon. Math. 82 (2003), no. 3, 133–140. | DOI | MR | Zbl
Cité par Sources :