On lifts of some projectable vector fields associated to a product preserving gauge bundle functor on vector bundles
Archivum mathematicum, Tome 50 (2014) no. 3, pp. 161-169 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a product preserving gauge bundle functor on vector bundles, we present some lifts of smooth functions that are constant or linear on fibers, and some lifts of projectable vector fields that are vector bundle morphisms.
For a product preserving gauge bundle functor on vector bundles, we present some lifts of smooth functions that are constant or linear on fibers, and some lifts of projectable vector fields that are vector bundle morphisms.
DOI : 10.5817/AM2014-3-161
Classification : 58A32
Keywords: projectable vector field; Weil bundle; product preserving gauge bundle functor; lift
@article{10_5817_AM2014_3_161,
     author = {Ntyam, A. and Wankap Nono, G. F. and Ndombol, Bitjong},
     title = {On lifts of some projectable vector fields associated to a product preserving gauge bundle functor on vector bundles},
     journal = {Archivum mathematicum},
     pages = {161--169},
     year = {2014},
     volume = {50},
     number = {3},
     doi = {10.5817/AM2014-3-161},
     mrnumber = {3263658},
     zbl = {06487004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-3-161/}
}
TY  - JOUR
AU  - Ntyam, A.
AU  - Wankap Nono, G. F.
AU  - Ndombol, Bitjong
TI  - On lifts of some projectable vector fields associated to a product preserving gauge bundle functor on vector bundles
JO  - Archivum mathematicum
PY  - 2014
SP  - 161
EP  - 169
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-3-161/
DO  - 10.5817/AM2014-3-161
LA  - en
ID  - 10_5817_AM2014_3_161
ER  - 
%0 Journal Article
%A Ntyam, A.
%A Wankap Nono, G. F.
%A Ndombol, Bitjong
%T On lifts of some projectable vector fields associated to a product preserving gauge bundle functor on vector bundles
%J Archivum mathematicum
%D 2014
%P 161-169
%V 50
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-3-161/
%R 10.5817/AM2014-3-161
%G en
%F 10_5817_AM2014_3_161
Ntyam, A.; Wankap Nono, G. F.; Ndombol, Bitjong. On lifts of some projectable vector fields associated to a product preserving gauge bundle functor on vector bundles. Archivum mathematicum, Tome 50 (2014) no. 3, pp. 161-169. doi: 10.5817/AM2014-3-161

[1] Cordero, L.A., Dobson, C.T.J., De León, M.: Differential geometry of frame bundles. Kluwer Academic Publishers, 1989. | MR

[2] Gancarzewicz, J., Mikulski, W.M., Pogoda, Z.: Lifts of some tensor fields and connections to product preserving functors. Nagoya Math. J. 135 (1994), 1–14. | MR | Zbl

[3] Kolář, I.: Covariant approach to natural transformations of Weil bundles. CMUC 27 (1986), 723–729. | MR

[4] Kolář, I.: On the natural operators on vector fields. Ann. Global Anal. Geom. 6 (1988), 119–117. | DOI | MR | Zbl

[5] Kolář, I., Modugno, M.: Torsions of connections on some natural bundles. Differential Geom. Appl. 2 (1992), 1–16. | DOI | MR | Zbl

[6] Kolář, I., Slovák, J., Michor, P.W.: Natural operations in differential geometry. Springer-Verlag Berlin–Heidelberg, 1993. | MR | Zbl

[7] Mikulski, W.M.: Product preserving gauge bundle functors on vector bundles. Colloq. Math. 90 (2001), no. 2, 277–285. | DOI | MR | Zbl

[8] Ntyam, A., Mba, A.: On natural vector bundle morphisms $T^{A}\circ \otimes _{s}^{q}\rightarrow \otimes _{s}^{q}\circ T^{A}$ over $\operatorname{id}_{T^{A}}$. Ann. Polon. Math. 96 (2009), no. 3, 295–301. | MR

[9] Ntyam, A., Wouafo, K.J.: New versions of curvature and torsion formulas for the complete lifting of a linear connection to Weil bundles. Ann. Polon. Math. 82 (2003), no. 3, 133–140. | DOI | MR | Zbl

Cité par Sources :