Double sequence spaces over $n$-normed spaces
Archivum mathematicum, Tome 50 (2014) no. 2, pp. 65-76 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we define some classes of double sequences over $n$-normed spaces by means of an Orlicz function. We study some relevant algebraic and topological properties. Further some inclusion relations among the classes are also examined.
In this paper, we define some classes of double sequences over $n$-normed spaces by means of an Orlicz function. We study some relevant algebraic and topological properties. Further some inclusion relations among the classes are also examined.
DOI : 10.5817/AM2014-2-65
Classification : 40A05, 40C05, 40D05, 46A70
Keywords: paranorm space; Orlicz function; solid; monotone; double sequences; $n$-normed space
@article{10_5817_AM2014_2_65,
     author = {Raj, Kuldip and Sharma, Sunil K.},
     title = {Double sequence spaces over $n$-normed spaces},
     journal = {Archivum mathematicum},
     pages = {65--76},
     year = {2014},
     volume = {50},
     number = {2},
     doi = {10.5817/AM2014-2-65},
     mrnumber = {3215280},
     zbl = {06391566},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-2-65/}
}
TY  - JOUR
AU  - Raj, Kuldip
AU  - Sharma, Sunil K.
TI  - Double sequence spaces over $n$-normed spaces
JO  - Archivum mathematicum
PY  - 2014
SP  - 65
EP  - 76
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-2-65/
DO  - 10.5817/AM2014-2-65
LA  - en
ID  - 10_5817_AM2014_2_65
ER  - 
%0 Journal Article
%A Raj, Kuldip
%A Sharma, Sunil K.
%T Double sequence spaces over $n$-normed spaces
%J Archivum mathematicum
%D 2014
%P 65-76
%V 50
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-2-65/
%R 10.5817/AM2014-2-65
%G en
%F 10_5817_AM2014_2_65
Raj, Kuldip; Sharma, Sunil K. Double sequence spaces over $n$-normed spaces. Archivum mathematicum, Tome 50 (2014) no. 2, pp. 65-76. doi: 10.5817/AM2014-2-65

[1] Başarir, M., Sonalcan, O.: On some double sequence spaces. J. Indian Acad. Math. 21 (1999), 193–220. | MR | Zbl

[2] Bromwich, T.J.: An Introduction to the Theory of Infinite Series. Macmillan and Co. Ltd., New York, 1965.

[3] Dutta, H.: An application of lacunary summability method to $n$-norm. Int. J. Appl. Math. Stat. 15 (09) (2009), 89–97. | MR

[4] Dutta, H.: Characterization of certain matrix classes involving generalized difference summability spaces. Appl. Sci. 11 (2009), 60–67. | MR | Zbl

[5] Dutta, H.: On n-normed linear space valued strongly (C,1)-summable difference sequences. Asian-Eur. J. Math. 3 (4) (2010), 565–575. | DOI | MR | Zbl

[6] Dutta, H.: On sequence spaces with elements in a sequence of real linear n-normed spaces. Appl. Math. Lett. 23 (9) (2010), 1109–1113. | DOI | MR | Zbl

[7] Dutta, H.: On some $n$-normed linear space valued difference sequences. J. Franklin Inst. B 348 (2011), 2876–2883. | DOI | MR | Zbl

[8] Dutta, H.: An Orlicz extension of difference sequences on real linear n-normed spaces. J. Inequal. Appl. 2013:232 (2013), 13pp. | DOI | MR | Zbl

[9] Dutta, H., Başar, F.: A generalization of Orlicz sequence spaces by Cesàro mean of order one. Acta Math. Univ. Comenian. (N.S.) 80 (2) (2011), 185–200. | MR | Zbl

[10] Dutta, H., Bilgin, T.: Strongly $(V^\lambda , A, \Delta _{vm}^n, p)$-summable sequence spaces defined by an Orlicz function. Appl. Math. Lett. 24 (7) (2011), 1057–1062. | DOI | MR

[11] Dutta, H., Reddy, B.S.: On non-standard $n$-norm on some sequence spaces. Int. J. Pure Appl. Math. 68 (1) (2011), 1–11. | MR | Zbl

[12] Dutta, H., Reddy, B.S., Cheng, S.S.: Strongly summable sequences defined over real $n$-normed spaces. Appl. Math. E-Notes 10 (2010), 199–209. | MR | Zbl

[13] Et, M., Çolak, R.: On generalized difference sequence spaces. Soochow J. Math. 21 (4) (1995), 377–386.

[14] Gähler, S.: Linear 2-normietre Rume. Math. Nachr. 28 (1965), 1–43. | DOI

[15] Gunawan, H.: On $n$-inner product, $n$-norms, and the Cauchy-Schwartz inequality. Sci. Math. Jap. 5 (2001), 47–54. | MR

[16] Gunawan, H.: The space of $p$-summable sequence and its natural $n$-norm. Bull. Austral. Math. Soc. 64 (2001), 137–147. | DOI | MR

[17] Gunawan, H., Mashadi, M.: On n-normed spaces. Int. J. Math. Math. Sci. 27 (2001), 631–639. | DOI | MR | Zbl

[18] Hardy, G.H.: On the convergence of certain multiple series. Proc. Camb. Phil., Soc. 19 (1917), 86–95.

[19] Karakaya, V., Dutta, H.: On some vector valued generalized difference modular sequence spaces. Filomat 25 (3) (2011), 15–27. | DOI | MR | Zbl

[20] Kızmaz, H.: On certain sequences spaces. Canad. Math. Bull. 24 (2) (1981), 169–176. | DOI | MR

[21] Lindenstrauss, J., Tzafriri, L.: On Orlicz sequence spaces. Israel J. Math. 10 (1971), 379–390. | DOI | MR | Zbl

[22] Misiak, A.: $n$-inner product spaces. Math. Nachr. 140 (1989), 299–319. | DOI | MR | Zbl

[23] Moricz, F.: Extension of the spaces $c $ and $c_0$ from single to double sequences. Acta Math. Hungar. 57 (1991), 129–136. | DOI | MR

[24] Moricz, F., Rhoades, B.E.: Almost convergence of double sequences and strong reqularity of summability matrices. Math. Proc. Camb. Phil. Soc. 104 (1988), 283–294. | DOI | MR

[25] Nakano, H.: Modular sequence spaces. Proc. Japan Acad. Ser. A Math. Sci. 27 (1951), 508–512. | MR

[26] Raj, K., Sharma, A.K., Sharma, S.K.: A sequence space defined by Musielak-Orlicz functions. Int. J. Pure Appl. Math. 67 (2011), 472–484. | MR

[27] Raj, K., Sharma, S.K., Sharma, A.K.: Some difference sequence spaces in $n$-normed spaces defined by Musielak-Orlicz function. Armen. J. math. 3 (2010), 127–141. | MR

[28] Raj, K., Sharma, S.K., Sharma, A.K.: Some new sequence spaces defined by a sequence of modulus functions in $n$-normed spaces. Int. J. Math. Sci. Engg. Appl. 5 (2011), 395–403. | MR

[29] Savaş, E.: On some new sequence spaces in 2-normed spaces using ideal convergence and an Orlicz function. J. Inequal. Appl. (2010), 8 pages, Article ID 482392. | MR | Zbl

[30] Simons, S.: The sequence spaces $l(p_v)$ and $m(p_v)$. Proc. Japan Acad. 27 (1951), 508–512.

[31] Tripathy, B.C.: Statistically convergent double sequences. Tamkang J. Math. 34 (2003), 231–237. | MR | Zbl

[32] Tripathy, B.C.: Generalized difference paranormed statistically convergent sequences defined by Orlicz function in a locally convex spaces. Soochow J. Math. 30 (2004), 431–446. | MR

[33] Tripathy, B.C., Altin, Y., Et, M.: Generalized difference sequence spaces on seminormed space defined by Orlicz function. Math. Slovaca 58 (2008), 315–324. | DOI | MR

[34] Tripathy, B.C., Dutta, H.: On some lacunary difference sequence spaces defined by a sequence of Orlicz functions and q-lacunary $\Delta _m^ n$ statistical convergence. An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 20 (1) (2012), 417–430. | MR

[35] Tripathy, B.C., Esi, A., Tripathy, B.K.: On a new type of generalized difference Cesàro sequence spaces. Soochow J. Math. 31 (3) (2005), 333–340. | MR | Zbl

[36] Wilansky, A.: Summability through functional analysis. North-Holland Mathematics Studies, vol. 85, Amsterdam - New York - Oxford: North-Holland, 1984. | MR | Zbl

Cité par Sources :