Keywords: supermanifolds; curves; jets; higher order tangent bundles
@article{10_5817_AM2014_2_115,
author = {Bruce, Andrew James},
title = {On curves and jets of curves on supermanifolds},
journal = {Archivum mathematicum},
pages = {115--130},
year = {2014},
volume = {50},
number = {2},
doi = {10.5817/AM2014-2-115},
mrnumber = {3215285},
zbl = {06391571},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-2-115/}
}
Bruce, Andrew James. On curves and jets of curves on supermanifolds. Archivum mathematicum, Tome 50 (2014) no. 2, pp. 115-130. doi: 10.5817/AM2014-2-115
[1] Alldridge, A.: A convenient category of supermanifolds. arXiv:1109.3161 [math.DG] 2011.
[2] Cariñena, J.F., Figueroa, H.: Geometric formulation of higher order Lagrangian systems in supermechanics. Acta Appl. Math. 51 (1998), 25–58. | DOI | MR | Zbl
[3] Carmeli, C., Caston, L., Fioresi, R.: Mathematical Foundations of Supersymmetry. EMS Series of Lectures in Mathematics, European Mathematical Society, 2011. | MR | Zbl
[4] Deligne, P., Morgan, J.W.: Notes on supersymmetry (following Joseph Bernstein). Quantum fields and strings: a course for mathematicians, Amer. Math. Soc., Providence, RI, 1999, Vol. 1, 2 (Princeton, NJ, 1996/1997), pp. 41–97. | MR | Zbl
[5] DeWitt, B.: Supermanifolds. Cambridge Monogr. Math. Phys., Cambridge University Press, 1984. | MR | Zbl
[6] di Bruno, F. Faà: Sullo sviluppo delle Funzioni. Annali di Scienze Matematiche e Fisiche 6 (1855), 479–480, (in Italian).
[7] Dumitrescu, F.: Superconnections and parallel transport. Pacific J. Math. 236 (2008), 307–332. | DOI | MR | Zbl
[8] Garnier, S., Wurzbacher, T.: The geodesic flow on a Riemannian supermanifold. J. Geom. Phys. 62 (2012), 1489–1508. | DOI | MR | Zbl
[9] Goertsches, O.: Riemannian supergeometry. Math. Z. 260 (2008), no. 3, 557–593. | MR | Zbl
[10] Grabowski, J., Rotkiewicz, M.: Graded bundles and homogeneity structures. J. Geom. Phys. 62 (2011), 21–36. | DOI | MR
[11] Hélein, F.: An introduction to supermanifolds and supersymmetry. Systèmes intégrables et théorie des champs quantiques (Baird, P., Hélein, F., Kouneiher, J., Pedit, F., Roubtsov, V., eds.), Hermann, 2009, pp. 103–157.
[12] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer–Verlag, 1993, http://www.emis.de/monographs/KSM/index.html | MR
[13] Lane, S. Mac: Categories for the working mathematician. Graduate Texts in Mathematics, vol. 5, Springer–Verlag, New York, 1998, Second Edition. | MR
[14] Manin, Y.: Gauge Field Theory and Complex Geometry. Springer, 1997, Second Edition. | MR | Zbl
[15] Rogers, A.: A global theory of supermanifolds. J. Math. Phys. 21 (1980), 1352–1365. | DOI | MR | Zbl
[16] Rogers, A.: Supermanifolds: theory and applications. World Scientific, 2007. | MR | Zbl
[17] Shvarts, A.S.: On the definition of superspace. Teoret. Mat. Fiz. 60 (1984), no. 1, 37–42. | MR | Zbl
[18] Van Proeyen, A.: Superconformal symmetry and higher-derivative Lagrangians. Breaking of supersymmetry and Ultraviolet Divergences in extended Supergravity, Frascati, 2013, arXiv:1306.2169 [hep-th].
[19] Varadarajan, V.S.: Supersymmetry for Mathematicians: An Introduction. Courant Lecture Notes, vol. 11, Providence, RI: American Mathematical Society, 2004. | MR | Zbl
[20] Voronov, A.A.: Maps of supermanifolds. Teoret. Mat. Fiz. 60 (1984), no. 1, 43–48, (Russian). | MR
Cité par Sources :