On curves and jets of curves on supermanifolds
Archivum mathematicum, Tome 50 (2014) no. 2, pp. 115-130 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we examine a natural concept of a curve on a supermanifold and the subsequent notion of the jet of a curve. We then tackle the question of geometrically defining the higher order tangent bundles of a supermanifold. Finally we make a quick comparison with the notion of a curve presented here are other common notions found in the literature.
In this paper we examine a natural concept of a curve on a supermanifold and the subsequent notion of the jet of a curve. We then tackle the question of geometrically defining the higher order tangent bundles of a supermanifold. Finally we make a quick comparison with the notion of a curve presented here are other common notions found in the literature.
DOI : 10.5817/AM2014-2-115
Classification : 58A20, 58A32, 58A50
Keywords: supermanifolds; curves; jets; higher order tangent bundles
@article{10_5817_AM2014_2_115,
     author = {Bruce, Andrew James},
     title = {On curves and jets of curves on supermanifolds},
     journal = {Archivum mathematicum},
     pages = {115--130},
     year = {2014},
     volume = {50},
     number = {2},
     doi = {10.5817/AM2014-2-115},
     mrnumber = {3215285},
     zbl = {06391571},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-2-115/}
}
TY  - JOUR
AU  - Bruce, Andrew James
TI  - On curves and jets of curves on supermanifolds
JO  - Archivum mathematicum
PY  - 2014
SP  - 115
EP  - 130
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-2-115/
DO  - 10.5817/AM2014-2-115
LA  - en
ID  - 10_5817_AM2014_2_115
ER  - 
%0 Journal Article
%A Bruce, Andrew James
%T On curves and jets of curves on supermanifolds
%J Archivum mathematicum
%D 2014
%P 115-130
%V 50
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-2-115/
%R 10.5817/AM2014-2-115
%G en
%F 10_5817_AM2014_2_115
Bruce, Andrew James. On curves and jets of curves on supermanifolds. Archivum mathematicum, Tome 50 (2014) no. 2, pp. 115-130. doi: 10.5817/AM2014-2-115

[1] Alldridge, A.: A convenient category of supermanifolds. arXiv:1109.3161 [math.DG] 2011.

[2] Cariñena, J.F., Figueroa, H.: Geometric formulation of higher order Lagrangian systems in supermechanics. Acta Appl. Math. 51 (1998), 25–58. | DOI | MR | Zbl

[3] Carmeli, C., Caston, L., Fioresi, R.: Mathematical Foundations of Supersymmetry. EMS Series of Lectures in Mathematics, European Mathematical Society, 2011. | MR | Zbl

[4] Deligne, P., Morgan, J.W.: Notes on supersymmetry (following Joseph Bernstein). Quantum fields and strings: a course for mathematicians, Amer. Math. Soc., Providence, RI, 1999, Vol. 1, 2 (Princeton, NJ, 1996/1997), pp. 41–97. | MR | Zbl

[5] DeWitt, B.: Supermanifolds. Cambridge Monogr. Math. Phys., Cambridge University Press, 1984. | MR | Zbl

[6] di Bruno, F. Faà: Sullo sviluppo delle Funzioni. Annali di Scienze Matematiche e Fisiche 6 (1855), 479–480, (in Italian).

[7] Dumitrescu, F.: Superconnections and parallel transport. Pacific J. Math. 236 (2008), 307–332. | DOI | MR | Zbl

[8] Garnier, S., Wurzbacher, T.: The geodesic flow on a Riemannian supermanifold. J. Geom. Phys. 62 (2012), 1489–1508. | DOI | MR | Zbl

[9] Goertsches, O.: Riemannian supergeometry. Math. Z. 260 (2008), no. 3, 557–593. | MR | Zbl

[10] Grabowski, J., Rotkiewicz, M.: Graded bundles and homogeneity structures. J. Geom. Phys. 62 (2011), 21–36. | DOI | MR

[11] Hélein, F.: An introduction to supermanifolds and supersymmetry. Systèmes intégrables et théorie des champs quantiques (Baird, P., Hélein, F., Kouneiher, J., Pedit, F., Roubtsov, V., eds.), Hermann, 2009, pp. 103–157.

[12] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer–Verlag, 1993, http://www.emis.de/monographs/KSM/index.html | MR

[13] Lane, S. Mac: Categories for the working mathematician. Graduate Texts in Mathematics, vol. 5, Springer–Verlag, New York, 1998, Second Edition. | MR

[14] Manin, Y.: Gauge Field Theory and Complex Geometry. Springer, 1997, Second Edition. | MR | Zbl

[15] Rogers, A.: A global theory of supermanifolds. J. Math. Phys. 21 (1980), 1352–1365. | DOI | MR | Zbl

[16] Rogers, A.: Supermanifolds: theory and applications. World Scientific, 2007. | MR | Zbl

[17] Shvarts, A.S.: On the definition of superspace. Teoret. Mat. Fiz. 60 (1984), no. 1, 37–42. | MR | Zbl

[18] Van Proeyen, A.: Superconformal symmetry and higher-derivative Lagrangians. Breaking of supersymmetry and Ultraviolet Divergences in extended Supergravity, Frascati, 2013, arXiv:1306.2169 [hep-th].

[19] Varadarajan, V.S.: Supersymmetry for Mathematicians: An Introduction. Courant Lecture Notes, vol. 11, Providence, RI: American Mathematical Society, 2004. | MR | Zbl

[20] Voronov, A.A.: Maps of supermanifolds. Teoret. Mat. Fiz. 60 (1984), no. 1, 43–48, (Russian). | MR

Cité par Sources :