Keywords: continuity; $({\mathbf{G_1}}, {\mathbf{G_2}})$-continuity; homogeneous; linearity; conditions (NL1) and (NL2); normed space
@article{10_5817_AM2014_2_107,
author = {Das, Pratulananda and Savas, Ekrem},
title = {On some consequences of a generalized continuity},
journal = {Archivum mathematicum},
pages = {107--114},
year = {2014},
volume = {50},
number = {2},
doi = {10.5817/AM2014-2-107},
mrnumber = {3215284},
zbl = {06391570},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-2-107/}
}
TY - JOUR AU - Das, Pratulananda AU - Savas, Ekrem TI - On some consequences of a generalized continuity JO - Archivum mathematicum PY - 2014 SP - 107 EP - 114 VL - 50 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-2-107/ DO - 10.5817/AM2014-2-107 LA - en ID - 10_5817_AM2014_2_107 ER -
Das, Pratulananda; Savas, Ekrem. On some consequences of a generalized continuity. Archivum mathematicum, Tome 50 (2014) no. 2, pp. 107-114. doi: 10.5817/AM2014-2-107
[1] Antoni, J.: On the A-continuity of real functions II. Math. Slovaca 36 (1986), no. 3, 283–287. | MR
[2] Antoni, J., Salat, T.: On the A-continuity of real functions. Acta Math. Univ. Comenian 39 (1980), 159–164. | MR | Zbl
[3] Boos, J.: Classical and Modern Methods in Summability. Oxford Univ. Press, Oxford, 2000. | MR | Zbl
[4] Borsik, J., Salat, T.: On F -continuity of real functions. Tatra Mt. Math. Publ. 2 (1993), 37–42. | MR | Zbl
[5] Buck, R.C.: Solution of problem 4216. Amer. Math. Monthly 55 (1948), 36. | MR
[6] Cakalli, H.: Sequential definitions of compactness. Appl.Math. Lett. 21 (2008), no. 6, 594–598. | DOI | MR | Zbl
[7] Cakalli, H.: On G-continuity. Comput. Math. Appl. 61 (2011), 313–318. | DOI | MR | Zbl
[8] Cakalli, H.: Sequential definitions of connectedness. Appl. Math. Lett. 25 (2012), 461–465. | DOI | MR | Zbl
[9] Cakalli, H., Das, P.: Fuzzy compactness via summability. Appl. Math. Lett. 22 (2009), no. 11, 1665–1669. | DOI | MR | Zbl
[10] Connor, J., Grosse-Erdmann, K.-G.: Sequential definitions of continuity for real functions. Rocky Mountain J. Math. 33 (2003), no. 1, 93–121. | DOI | MR | Zbl
[11] Dik, M., Canak, I.: New types of continuities. Abstr. Appl. Anal. 2010 (2010), p.6. DOI: | DOI | MR | Zbl
[12] Iwinski, T.B.: Some remarks on Toeplitz methods and continuity. Comment. Math. Prace Mat. 17 (1972), 37–43. | MR | Zbl
[13] Lahiri, B.K., Das, P.: $I$ and $I^*$ convergence in topological spaces. Math. Bohemica 130 (2005), no. 2, 153–160. | MR | Zbl
[14] Maio, G.D., Kocinac, Lj.D.R.: Statistical convergence in topology. Topology Appl. 156 (2008), 28–45. | DOI | MR | Zbl
[15] Posner, E.C.: Summability preserving functions. Proc. Amer. Math. Soc. 112 (1961), 73–76. | DOI | MR | Zbl
[16] Robbins, H.: Problem 4216. Amer. Math. Monthly 53 (1946), 470–471.
[17] Savas, E., Das, G.: On the A-continuity of real functions. İstanbulÜniv. Fen Fak. Mat. Derg. 53 (1994), 61–66. | MR
[18] Spigel, E., Krupnik, N.: On the $A$-continuity of real functions. J. Anal. 2 (1994), 145–155. | MR
[19] Srinivasan, V.K.: An equivalent condition for the continuity of a function. Texas J. Sci. 32 (1980), 176–177. | MR
Cité par Sources :