On some consequences of a generalized continuity
Archivum mathematicum, Tome 50 (2014) no. 2, pp. 107-114 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In normed linear space settings, modifying the sequential definition of continuity of an operator by replacing the usual limit "$\lim $" with arbitrary linear regular summability methods $\bf {G}$ we consider the notion of a generalized continuity ($(\bf {G_1}, \bf {G_2}) $-continuity) and examine some of its consequences in respect of usual continuity and linearity of the operators between two normed linear spaces.
In normed linear space settings, modifying the sequential definition of continuity of an operator by replacing the usual limit "$\lim $" with arbitrary linear regular summability methods $\bf {G}$ we consider the notion of a generalized continuity ($(\bf {G_1}, \bf {G_2}) $-continuity) and examine some of its consequences in respect of usual continuity and linearity of the operators between two normed linear spaces.
DOI : 10.5817/AM2014-2-107
Classification : 40C05, 47L05
Keywords: continuity; $({\mathbf{G_1}}, {\mathbf{G_2}})$-continuity; homogeneous; linearity; conditions (NL1) and (NL2); normed space
@article{10_5817_AM2014_2_107,
     author = {Das, Pratulananda and Savas, Ekrem},
     title = {On some consequences of a generalized continuity},
     journal = {Archivum mathematicum},
     pages = {107--114},
     year = {2014},
     volume = {50},
     number = {2},
     doi = {10.5817/AM2014-2-107},
     mrnumber = {3215284},
     zbl = {06391570},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-2-107/}
}
TY  - JOUR
AU  - Das, Pratulananda
AU  - Savas, Ekrem
TI  - On some consequences of a generalized continuity
JO  - Archivum mathematicum
PY  - 2014
SP  - 107
EP  - 114
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-2-107/
DO  - 10.5817/AM2014-2-107
LA  - en
ID  - 10_5817_AM2014_2_107
ER  - 
%0 Journal Article
%A Das, Pratulananda
%A Savas, Ekrem
%T On some consequences of a generalized continuity
%J Archivum mathematicum
%D 2014
%P 107-114
%V 50
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-2-107/
%R 10.5817/AM2014-2-107
%G en
%F 10_5817_AM2014_2_107
Das, Pratulananda; Savas, Ekrem. On some consequences of a generalized continuity. Archivum mathematicum, Tome 50 (2014) no. 2, pp. 107-114. doi: 10.5817/AM2014-2-107

[1] Antoni, J.: On the A-continuity of real functions II. Math. Slovaca 36 (1986), no. 3, 283–287. | MR

[2] Antoni, J., Salat, T.: On the A-continuity of real functions. Acta Math. Univ. Comenian 39 (1980), 159–164. | MR | Zbl

[3] Boos, J.: Classical and Modern Methods in Summability. Oxford Univ. Press, Oxford, 2000. | MR | Zbl

[4] Borsik, J., Salat, T.: On F -continuity of real functions. Tatra Mt. Math. Publ. 2 (1993), 37–42. | MR | Zbl

[5] Buck, R.C.: Solution of problem 4216. Amer. Math. Monthly 55 (1948), 36. | MR

[6] Cakalli, H.: Sequential definitions of compactness. Appl.Math. Lett. 21 (2008), no. 6, 594–598. | DOI | MR | Zbl

[7] Cakalli, H.: On G-continuity. Comput. Math. Appl. 61 (2011), 313–318. | DOI | MR | Zbl

[8] Cakalli, H.: Sequential definitions of connectedness. Appl. Math. Lett. 25 (2012), 461–465. | DOI | MR | Zbl

[9] Cakalli, H., Das, P.: Fuzzy compactness via summability. Appl. Math. Lett. 22 (2009), no. 11, 1665–1669. | DOI | MR | Zbl

[10] Connor, J., Grosse-Erdmann, K.-G.: Sequential definitions of continuity for real functions. Rocky Mountain J. Math. 33 (2003), no. 1, 93–121. | DOI | MR | Zbl

[11] Dik, M., Canak, I.: New types of continuities. Abstr. Appl. Anal. 2010 (2010), p.6. DOI:  | DOI | MR | Zbl

[12] Iwinski, T.B.: Some remarks on Toeplitz methods and continuity. Comment. Math. Prace Mat. 17 (1972), 37–43. | MR | Zbl

[13] Lahiri, B.K., Das, P.: $I$ and $I^*$ convergence in topological spaces. Math. Bohemica 130 (2005), no. 2, 153–160. | MR | Zbl

[14] Maio, G.D., Kocinac, Lj.D.R.: Statistical convergence in topology. Topology Appl. 156 (2008), 28–45. | DOI | MR | Zbl

[15] Posner, E.C.: Summability preserving functions. Proc. Amer. Math. Soc. 112 (1961), 73–76. | DOI | MR | Zbl

[16] Robbins, H.: Problem 4216. Amer. Math. Monthly 53 (1946), 470–471.

[17] Savas, E., Das, G.: On the A-continuity of real functions. İstanbulÜniv. Fen Fak. Mat. Derg. 53 (1994), 61–66. | MR

[18] Spigel, E., Krupnik, N.: On the $A$-continuity of real functions. J. Anal. 2 (1994), 145–155. | MR

[19] Srinivasan, V.K.: An equivalent condition for the continuity of a function. Texas J. Sci. 32 (1980), 176–177. | MR

Cité par Sources :