Stability and boundedness of solutions of nonlinear vector differential equations of third order
Archivum mathematicum, Tome 50 (2014) no. 2, pp. 101-106 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper studies the equation \begin{equation*}\dddot{X}+\Psi (\dot{X})\ddot{X}+\Phi (X)\dot{X}+cX=P(t) \end{equation*} in two cases: (i) $P(t)\equiv 0$, (ii) $P(t)\ne 0$. In case (i), the global asymptotic stability of the solution $X=0$ is studied; in case (ii), the boundedness of all solutions is proved.
The paper studies the equation \begin{equation*}\dddot{X}+\Psi (\dot{X})\ddot{X}+\Phi (X)\dot{X}+cX=P(t) \end{equation*} in two cases: (i) $P(t)\equiv 0$, (ii) $P(t)\ne 0$. In case (i), the global asymptotic stability of the solution $X=0$ is studied; in case (ii), the boundedness of all solutions is proved.
DOI : 10.5817/AM2014-2-101
Classification : 34C11, 34D05, 34D20, 34D40
Keywords: boundedness; stability; Liapunov function; differential equations of third order
@article{10_5817_AM2014_2_101,
     author = {Omeike, M. O.},
     title = {Stability and boundedness of solutions of nonlinear vector differential equations of third order},
     journal = {Archivum mathematicum},
     pages = {101--106},
     year = {2014},
     volume = {50},
     number = {2},
     doi = {10.5817/AM2014-2-101},
     mrnumber = {3215283},
     zbl = {06391569},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-2-101/}
}
TY  - JOUR
AU  - Omeike, M. O.
TI  - Stability and boundedness of solutions of nonlinear vector differential equations of third order
JO  - Archivum mathematicum
PY  - 2014
SP  - 101
EP  - 106
VL  - 50
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-2-101/
DO  - 10.5817/AM2014-2-101
LA  - en
ID  - 10_5817_AM2014_2_101
ER  - 
%0 Journal Article
%A Omeike, M. O.
%T Stability and boundedness of solutions of nonlinear vector differential equations of third order
%J Archivum mathematicum
%D 2014
%P 101-106
%V 50
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-2-101/
%R 10.5817/AM2014-2-101
%G en
%F 10_5817_AM2014_2_101
Omeike, M. O. Stability and boundedness of solutions of nonlinear vector differential equations of third order. Archivum mathematicum, Tome 50 (2014) no. 2, pp. 101-106. doi: 10.5817/AM2014-2-101

[1] Chukwu, E.N.: On boundedness of solutions of third ordr differential equations. Ann. Math. Pura Appl. (4) 104 (1975), 123–149. | MR

[2] Ezeilo, J.O.C.: A generalization of a boundedness theorem for a certain third-order differential equation. Proc. Cambridge Philos. Soc. 63 (1967), 735–742. | MR

[3] Liapunov, A.M.: Stability of Motion. Academic Press London, 1906. | MR

[4] Mehri, B., Shadman, D.: Boundedness of solutions of certain third order differential equations. Math. Inequal. Appl. 2 (1999), no. 4, 545–549. | MR

[5] Omeike, M.O., Afuwape, A.U.: New result on the ultimate boundedness of solutions of certain third-order vector differential equations. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 49 (2010), no. 1, 55–61. | MR

[6] Rao, M.R.M.: Ordinary Differential Equations. Affiliated East West Private Limited, London, 1980. | Zbl

[7] Reissig, R., Sansone, G., Conti, R.: Nonlinear Differential Equations of Higher Order. Noordhoff Groningen, 1974.

[8] Tejumola, H.O.: A note on the boundedness and the stability of solutions of certain third order differential equations. Ann. Mat. Pura Appl. (4) 92 (1972), no. 4, 65–75. | DOI | MR | Zbl

[9] Tunc, C.: Uniform ultimate boundedness of the solutions of third order nonlinear differential equations. Kuwait J. Sci. Engrg. 12 (2005), no. 1, 39–48. | MR | Zbl

[10] Tunc, C.: On the stability and boundedness of solutions of nonlinear vector differential equations of third-order. Nonlinear Anal. 70 (2009), 2232–2236. | DOI | MR | Zbl

[11] Tunc, C., Ates, M.: Stability and boundedness results for solutions of certain third order nonlinear vector differential equations. Nonlinear Dynam. 45 (2006), no. 3–4, 271–281. | MR | Zbl

Cité par Sources :