Stability and boundedness of solutions of nonlinear vector differential equations of third order
Archivum mathematicum, Tome 50 (2014) no. 2, pp. 101-106.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper studies the equation \begin{equation*}\dddot{X}+\Psi (\dot{X})\ddot{X}+\Phi (X)\dot{X}+cX=P(t) \end{equation*} in two cases: (i) $P(t)\equiv 0$, (ii) $P(t)\ne 0$. In case (i), the global asymptotic stability of the solution $X=0$ is studied; in case (ii), the boundedness of all solutions is proved.
DOI : 10.5817/AM2014-2-101
Classification : 34C11, 34D05, 34D20, 34D40
Keywords: boundedness; stability; Liapunov function; differential equations of third order
@article{10_5817_AM2014_2_101,
     author = {Omeike, M. O.},
     title = {Stability and boundedness of solutions of nonlinear vector differential equations of third order},
     journal = {Archivum mathematicum},
     pages = {101--106},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2014},
     doi = {10.5817/AM2014-2-101},
     mrnumber = {3215283},
     zbl = {06391569},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-2-101/}
}
TY  - JOUR
AU  - Omeike, M. O.
TI  - Stability and boundedness of solutions of nonlinear vector differential equations of third order
JO  - Archivum mathematicum
PY  - 2014
SP  - 101
EP  - 106
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-2-101/
DO  - 10.5817/AM2014-2-101
LA  - en
ID  - 10_5817_AM2014_2_101
ER  - 
%0 Journal Article
%A Omeike, M. O.
%T Stability and boundedness of solutions of nonlinear vector differential equations of third order
%J Archivum mathematicum
%D 2014
%P 101-106
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-2-101/
%R 10.5817/AM2014-2-101
%G en
%F 10_5817_AM2014_2_101
Omeike, M. O. Stability and boundedness of solutions of nonlinear vector differential equations of third order. Archivum mathematicum, Tome 50 (2014) no. 2, pp. 101-106. doi : 10.5817/AM2014-2-101. http://geodesic.mathdoc.fr/articles/10.5817/AM2014-2-101/

Cité par Sources :