Keywords: degenerate nolinear elliptic equations; weighted Sobolev spaces
@article{10_5817_AM2014_1_51,
author = {Cavalheiro, Albo Carlos},
title = {Existence and uniqueness of solutions for some degenerate nonlinear elliptic equations},
journal = {Archivum mathematicum},
pages = {51--63},
year = {2014},
volume = {50},
number = {1},
doi = {10.5817/AM2014-1-51},
mrnumber = {3194768},
zbl = {06391565},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-1-51/}
}
TY - JOUR AU - Cavalheiro, Albo Carlos TI - Existence and uniqueness of solutions for some degenerate nonlinear elliptic equations JO - Archivum mathematicum PY - 2014 SP - 51 EP - 63 VL - 50 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-1-51/ DO - 10.5817/AM2014-1-51 LA - en ID - 10_5817_AM2014_1_51 ER -
%0 Journal Article %A Cavalheiro, Albo Carlos %T Existence and uniqueness of solutions for some degenerate nonlinear elliptic equations %J Archivum mathematicum %D 2014 %P 51-63 %V 50 %N 1 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-1-51/ %R 10.5817/AM2014-1-51 %G en %F 10_5817_AM2014_1_51
Cavalheiro, Albo Carlos. Existence and uniqueness of solutions for some degenerate nonlinear elliptic equations. Archivum mathematicum, Tome 50 (2014) no. 1, pp. 51-63. doi: 10.5817/AM2014-1-51
[1] Cavalheiro, A.C.: Existence results for Dirichlet problems with degenerate p-Laplacian. Opuscula Math. 33 (2013), no. 3, 439–453. | DOI | MR
[2] Cavalheiro, A.C.: Existence and uniqueness of solutions for some degenerate nonlinear Dirichlet problems. J. Appl. Anal. 19 (2013), 41–54. | DOI | MR | Zbl
[3] Chipot, M.: Elliptic Equations: An Introductory Course. Birkhäuser, Berlin, 2009. | MR | Zbl
[4] Drábek, P., Kufner, A., Nicolosi, F.: Quasilinear Elliptic Equations with Degenerations and Singularities. Walter de Gruyter, Berlin, 1997. | MR | Zbl
[5] Fabes, E., Kenig, C., Serapioni, R.: The local regularity of solutions of degenerate elliptic equations. Comm. Partial Differential Equations (1982), 77–116. | DOI | MR | Zbl
[6] Fučik, S., John, O., Kufner, A.: Function spaces. Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis. Noordhoff International Publishing, Leyden; Academia, Prague, 1977. | MR
[7] Garcia-Cuerva, J., de Francia, J.L. Rubio: Weighted Norm Inequalities and Related Topics. North-Holland Math. Stud. 116 (1985). | MR
[8] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Equations of Second Order. second ed., Springer, New York, 1983. | MR
[9] Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Math. Monographs, Clarendon Press, 1993. | MR | Zbl
[10] Kufner, A.: Weighted Sobolev Spaces. John Wiley and Sons, 1985. | MR | Zbl
[11] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165 (1972), 207–226. | DOI | MR | Zbl
[12] Talbi, M., Tsouli, N.: On the spectrum of the weighted p-Biharmonic operator with weight. Mediterranean J. Math. 4 (2007), 73–86. | DOI | MR | Zbl
[13] Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. Academic Press, São Diego, 1986. | MR | Zbl
[14] Turesson, B.O.: Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Math., vol. 1736, Springer-Verlag, 2000. | MR | Zbl
[15] Zeidler, E.: Nonlinear Functional Analysis and its Applications. vol. II/B, Springer-Verlag, 1990. | MR | Zbl
[16] Zeidler, E.: Nonlinear Functional Analysis and its Applications. vol. I, Springer-Verlag, 1990. | Zbl
Cité par Sources :