Existence and uniqueness of solutions for some degenerate nonlinear elliptic equations
Archivum mathematicum, Tome 50 (2014) no. 1, pp. 51-63 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this article we are interested in the existence and uniqueness of solutions for the Dirichlet problem associated with the degenerate nonlinear elliptic equations \begin{align*}{\Delta }(v(x)\, {\vert {\Delta }u\vert }^{p-2}{\Delta }u) -\sum _{j=1}^n D_j{\bigl [}{\omega }(x) {\mathcal{A}}_j(x, u, {\nabla }u){\bigr ]}\\ =\ f_0(x) - \sum _{j=1}^nD_jf_j(x)\,, \quad \mbox {in}\quad {\Omega }\end{align*} in the setting of the weighted Sobolev spaces.
In this article we are interested in the existence and uniqueness of solutions for the Dirichlet problem associated with the degenerate nonlinear elliptic equations \begin{align*}{\Delta }(v(x)\, {\vert {\Delta }u\vert }^{p-2}{\Delta }u) -\sum _{j=1}^n D_j{\bigl [}{\omega }(x) {\mathcal{A}}_j(x, u, {\nabla }u){\bigr ]}\\ =\ f_0(x) - \sum _{j=1}^nD_jf_j(x)\,, \quad \mbox {in}\quad {\Omega }\end{align*} in the setting of the weighted Sobolev spaces.
DOI : 10.5817/AM2014-1-51
Classification : 35J60, 35J70
Keywords: degenerate nolinear elliptic equations; weighted Sobolev spaces
@article{10_5817_AM2014_1_51,
     author = {Cavalheiro, Albo Carlos},
     title = {Existence and uniqueness of solutions for some degenerate nonlinear elliptic equations},
     journal = {Archivum mathematicum},
     pages = {51--63},
     year = {2014},
     volume = {50},
     number = {1},
     doi = {10.5817/AM2014-1-51},
     mrnumber = {3194768},
     zbl = {06391565},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-1-51/}
}
TY  - JOUR
AU  - Cavalheiro, Albo Carlos
TI  - Existence and uniqueness of solutions for some degenerate nonlinear elliptic equations
JO  - Archivum mathematicum
PY  - 2014
SP  - 51
EP  - 63
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-1-51/
DO  - 10.5817/AM2014-1-51
LA  - en
ID  - 10_5817_AM2014_1_51
ER  - 
%0 Journal Article
%A Cavalheiro, Albo Carlos
%T Existence and uniqueness of solutions for some degenerate nonlinear elliptic equations
%J Archivum mathematicum
%D 2014
%P 51-63
%V 50
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-1-51/
%R 10.5817/AM2014-1-51
%G en
%F 10_5817_AM2014_1_51
Cavalheiro, Albo Carlos. Existence and uniqueness of solutions for some degenerate nonlinear elliptic equations. Archivum mathematicum, Tome 50 (2014) no. 1, pp. 51-63. doi: 10.5817/AM2014-1-51

[1] Cavalheiro, A.C.: Existence results for Dirichlet problems with degenerate p-Laplacian. Opuscula Math. 33 (2013), no. 3, 439–453. | DOI | MR

[2] Cavalheiro, A.C.: Existence and uniqueness of solutions for some degenerate nonlinear Dirichlet problems. J. Appl. Anal. 19 (2013), 41–54. | DOI | MR | Zbl

[3] Chipot, M.: Elliptic Equations: An Introductory Course. Birkhäuser, Berlin, 2009. | MR | Zbl

[4] Drábek, P., Kufner, A., Nicolosi, F.: Quasilinear Elliptic Equations with Degenerations and Singularities. Walter de Gruyter, Berlin, 1997. | MR | Zbl

[5] Fabes, E., Kenig, C., Serapioni, R.: The local regularity of solutions of degenerate elliptic equations. Comm. Partial Differential Equations (1982), 77–116. | DOI | MR | Zbl

[6] Fučik, S., John, O., Kufner, A.: Function spaces. Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis. Noordhoff International Publishing, Leyden; Academia, Prague, 1977. | MR

[7] Garcia-Cuerva, J., de Francia, J.L. Rubio: Weighted Norm Inequalities and Related Topics. North-Holland Math. Stud. 116 (1985). | MR

[8] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Equations of Second Order. second ed., Springer, New York, 1983. | MR

[9] Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Math. Monographs, Clarendon Press, 1993. | MR | Zbl

[10] Kufner, A.: Weighted Sobolev Spaces. John Wiley and Sons, 1985. | MR | Zbl

[11] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165 (1972), 207–226. | DOI | MR | Zbl

[12] Talbi, M., Tsouli, N.: On the spectrum of the weighted p-Biharmonic operator with weight. Mediterranean J. Math. 4 (2007), 73–86. | DOI | MR | Zbl

[13] Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. Academic Press, São Diego, 1986. | MR | Zbl

[14] Turesson, B.O.: Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Math., vol. 1736, Springer-Verlag, 2000. | MR | Zbl

[15] Zeidler, E.: Nonlinear Functional Analysis and its Applications. vol. II/B, Springer-Verlag, 1990. | MR | Zbl

[16] Zeidler, E.: Nonlinear Functional Analysis and its Applications. vol. I, Springer-Verlag, 1990. | Zbl

Cité par Sources :