Generalized Schauder frames
Archivum mathematicum, Tome 50 (2014) no. 1, pp. 39-49 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Schauder frames were introduced by Han and Larson [9] and further studied by Casazza, Dilworth, Odell, Schlumprecht and Zsak [2]. In this paper, we have introduced approximative Schauder frames as a generalization of Schauder frames and a characterization for approximative Schauder frames in Banach spaces in terms of sequence of non-zero endomorphism of finite rank has been given. Further, weak* and weak approximative Schauder frames in Banach spaces have been defined. Finally, it has been proved that $E$ has a weak approximative Schauder frame if and only if $E^*$ has a weak* approximative Schauder frame.
Schauder frames were introduced by Han and Larson [9] and further studied by Casazza, Dilworth, Odell, Schlumprecht and Zsak [2]. In this paper, we have introduced approximative Schauder frames as a generalization of Schauder frames and a characterization for approximative Schauder frames in Banach spaces in terms of sequence of non-zero endomorphism of finite rank has been given. Further, weak* and weak approximative Schauder frames in Banach spaces have been defined. Finally, it has been proved that $E$ has a weak approximative Schauder frame if and only if $E^*$ has a weak* approximative Schauder frame.
DOI : 10.5817/AM2014-1-39
Classification : 42C15, 42C30, 94C15
Keywords: frame; Schauder frames
@article{10_5817_AM2014_1_39,
     author = {Kaushik, S.K. and Sharma, Shalu},
     title = {Generalized {Schauder} frames},
     journal = {Archivum mathematicum},
     pages = {39--49},
     year = {2014},
     volume = {50},
     number = {1},
     doi = {10.5817/AM2014-1-39},
     mrnumber = {3194767},
     zbl = {06391564},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-1-39/}
}
TY  - JOUR
AU  - Kaushik, S.K.
AU  - Sharma, Shalu
TI  - Generalized Schauder frames
JO  - Archivum mathematicum
PY  - 2014
SP  - 39
EP  - 49
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-1-39/
DO  - 10.5817/AM2014-1-39
LA  - en
ID  - 10_5817_AM2014_1_39
ER  - 
%0 Journal Article
%A Kaushik, S.K.
%A Sharma, Shalu
%T Generalized Schauder frames
%J Archivum mathematicum
%D 2014
%P 39-49
%V 50
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-1-39/
%R 10.5817/AM2014-1-39
%G en
%F 10_5817_AM2014_1_39
Kaushik, S.K.; Sharma, Shalu. Generalized Schauder frames. Archivum mathematicum, Tome 50 (2014) no. 1, pp. 39-49. doi: 10.5817/AM2014-1-39

[1] Casazza, P.G.: The art of frame theory. Taiwanese J. Math. 4 (2) (2000), 129–201. | MR | Zbl

[2] Casazza, P.G., Dilworth, S.J., Odell, E., Schlumprecht, Th., Zsak, A.: Cofficient quantization for frames in Banach spaces. J. Math.Anal. Appl. 348 (2008), 66–86. | DOI | MR

[3] Casazza, P.G., Han, D., Larson, D.R.: Frames for Banach spaces. Contemp. Math. 247 (1999), 149–182. | DOI | MR | Zbl

[4] Christensen, O.: Frames and bases (An introductory course). Birkhäuser, Boston, 2008. | MR | Zbl

[5] Daubechies, I., Grossmann, A., Meyer, Y.: Painless non-orthogonal expansions. J. Math. Phys. 27 (1986), 1271–1283. | DOI | MR

[6] Duffin, R.J., Schaeffer, A.C.: A class of non-harmonic Fourier series. Trans. Amer. Math. Soc. 72 (1952), 341–366. | DOI | MR

[7] Feichtinger, H.G., Grochenig, K.: A unified approach to atomic decompostion via integrable group representations. Lecture Notes in Math., vol. 1302, Springer, Berlin, 1988, pp. 429–457. | MR

[8] Gabor, D.: Theory of communications. J. Inst. Elec. Engg. 93 (1946), 429–457.

[9] Han, D., Larson, D.R.: Frames, bases and group representations. Mem. Amer. Math. Soc. 147 697) (2000), 1–91. | MR | Zbl

[10] Kaushik, S.K., Sharma, S.K., Poumai, K.T.: On Schauder frames in conjugate Banach spaces. J. Math. 2013 (2013), 4, Article ID 318659. | MR | Zbl

[11] Liu, R.: On shrinking and boundedly complete Schauder frames of Banach spaces. J. Math. Anal. Appl. 365 (1), 385–398. | DOI | MR | Zbl

[12] Liu, R., Zheng, B.: A characterization of Schauder frames which are near Schauder bases. J. Fourier Anal. Appl. 16 (2010), 791–803. | DOI | MR | Zbl

[13] Singer, I.: Bases in Banach spaces II. Springer, New York, 1981. | MR | Zbl

[14] Vashisht, L.K.: On $\phi $ Schauder frames. TWMS J. Appl. Eng. Math. 2 (1) (2012), 116–120. | MR | Zbl

Cité par Sources :