Generalized Schauder frames
Archivum mathematicum, Tome 50 (2014) no. 1, pp. 39-49.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Schauder frames were introduced by Han and Larson [9] and further studied by Casazza, Dilworth, Odell, Schlumprecht and Zsak [2]. In this paper, we have introduced approximative Schauder frames as a generalization of Schauder frames and a characterization for approximative Schauder frames in Banach spaces in terms of sequence of non-zero endomorphism of finite rank has been given. Further, weak* and weak approximative Schauder frames in Banach spaces have been defined. Finally, it has been proved that $E$ has a weak approximative Schauder frame if and only if $E^*$ has a weak* approximative Schauder frame.
DOI : 10.5817/AM2014-1-39
Classification : 42C15, 42C30, 94C15
Keywords: frame; Schauder frames
@article{10_5817_AM2014_1_39,
     author = {Kaushik, S.K. and Sharma, Shalu},
     title = {Generalized {Schauder} frames},
     journal = {Archivum mathematicum},
     pages = {39--49},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2014},
     doi = {10.5817/AM2014-1-39},
     mrnumber = {3194767},
     zbl = {06391564},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-1-39/}
}
TY  - JOUR
AU  - Kaushik, S.K.
AU  - Sharma, Shalu
TI  - Generalized Schauder frames
JO  - Archivum mathematicum
PY  - 2014
SP  - 39
EP  - 49
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-1-39/
DO  - 10.5817/AM2014-1-39
LA  - en
ID  - 10_5817_AM2014_1_39
ER  - 
%0 Journal Article
%A Kaushik, S.K.
%A Sharma, Shalu
%T Generalized Schauder frames
%J Archivum mathematicum
%D 2014
%P 39-49
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-1-39/
%R 10.5817/AM2014-1-39
%G en
%F 10_5817_AM2014_1_39
Kaushik, S.K.; Sharma, Shalu. Generalized Schauder frames. Archivum mathematicum, Tome 50 (2014) no. 1, pp. 39-49. doi : 10.5817/AM2014-1-39. http://geodesic.mathdoc.fr/articles/10.5817/AM2014-1-39/

Cité par Sources :