Lefschetz coincidence numbers of solvmanifolds with Mostow conditions
Archivum mathematicum, Tome 50 (2014) no. 1, pp. 27-37 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For any two continuous maps $f$, $g$ between two solvmanifolds of the same dimension satisfying the Mostow condition, we give a technique of computation of the Lefschetz coincidence number of $f$, $g$. This result is an extension of the result of Ha, Lee and Penninckx for completely solvable case.
For any two continuous maps $f$, $g$ between two solvmanifolds of the same dimension satisfying the Mostow condition, we give a technique of computation of the Lefschetz coincidence number of $f$, $g$. This result is an extension of the result of Ha, Lee and Penninckx for completely solvable case.
DOI : 10.5817/AM2014-1-27
Classification : 17B55, 22E25, 53C30, 54H25, 55M20
Keywords: de Rham cohomology; Lefschetz coincidence number; solvmanifold
@article{10_5817_AM2014_1_27,
     author = {Kasuya, Hisashi},
     title = {Lefschetz coincidence numbers of solvmanifolds with {Mostow} conditions},
     journal = {Archivum mathematicum},
     pages = {27--37},
     year = {2014},
     volume = {50},
     number = {1},
     doi = {10.5817/AM2014-1-27},
     mrnumber = {3194766},
     zbl = {06391563},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-1-27/}
}
TY  - JOUR
AU  - Kasuya, Hisashi
TI  - Lefschetz coincidence numbers of solvmanifolds with Mostow conditions
JO  - Archivum mathematicum
PY  - 2014
SP  - 27
EP  - 37
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-1-27/
DO  - 10.5817/AM2014-1-27
LA  - en
ID  - 10_5817_AM2014_1_27
ER  - 
%0 Journal Article
%A Kasuya, Hisashi
%T Lefschetz coincidence numbers of solvmanifolds with Mostow conditions
%J Archivum mathematicum
%D 2014
%P 27-37
%V 50
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-1-27/
%R 10.5817/AM2014-1-27
%G en
%F 10_5817_AM2014_1_27
Kasuya, Hisashi. Lefschetz coincidence numbers of solvmanifolds with Mostow conditions. Archivum mathematicum, Tome 50 (2014) no. 1, pp. 27-37. doi: 10.5817/AM2014-1-27

[1] Auslander, L.: An exposition of the structure of solvmanifolds. I. Algebraic theory. Bull. Amer. Math. Soc. 79 (1973), no. 2, 227–261. | DOI | MR | Zbl

[2] Baues, O., Klopsch, B.: Deformations and rigidity of lattices in solvable Lie groups. J. Topol. (online published). | MR

[3] Console, S., Fino, A.: On the de Rham cohomology of solvmanifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 10 (2011), no. 4, 801–811. | MR | Zbl

[4] Ha, K.Y., Lee, J.B., Penninckx, P.: Anosov theorem for coincidences on special solvmanifolds of type (R). Proc. Amer. Math. Soc. 139 (2011), no. 6, 2239–2248. | MR

[5] Hattori, A.: Spectral sequence in the de Rham cohomology of fibre bundles. J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 289–331. | MR | Zbl

[6] Jezierski, J., Marzantowicz, W.: Homotopy methods in topological fixed and periodic points theory. Topol. Fixed Point Theory Appl., vol. 3, Springer, Dordrecht, 2006. | MR | Zbl

[7] Kasuya, H.: The Frolicher spectral sequences of certain solvmanifolds. J. Geom. Anal. (2013), Online First. | DOI | MR

[8] Kasuya, H.: Vaisman metrics on solvmanifolds and Oeljeklaus-Toma manifolds. Bull. Lond. Math. Soc. 45 (2013), no. 1, 15–26. | DOI | MR | Zbl

[9] McCleary, J.: A user’s guide to spectral sequences. second ed., Cambridge Studies in Advanced Mathematics, Cambridge, 2001. | MR | Zbl

[10] McCord, C. K.: Lefschetz and Nielsen coincidence numbers on nilmanifolds and solvmanifolds. Topology Appl. 75 (1997), no. 1, 81–92. | DOI | MR | Zbl

[11] McCord, C.K., : Nielsen numbers and Lefschetz numbers on solvmanifolds. Pacific J. Math. 147 (1991), no. 1, 153–164. | DOI | MR | Zbl

[12] Mostow, G.D.: Cohomology of topological groups and solvmanifolds. Ann. of Math. (2) 73 (1961), 20–48. | MR | Zbl

[13] Nomizu, K.: On the cohomology of compact homogeneous spaces of nilpotent Lie groups. Ann. of Math. (2) 59 (1954), 531–538. | DOI | MR | Zbl

[14] Onishchik, A.L., Vinberg, E.B.: Lie groups and Lie algebras II. Springer, 2000. | MR | Zbl

[15] Raghnathan, M.S.: Discrete subgroups of Lie Groups. Springer-Verlag, New York, 1972. | MR

[16] Steenrod, N.: The Topology of Fibre Bundles. Princeton University Press, 1951. | MR | Zbl

[17] Witte, D.: Superrigidity of lattices in solvable Lie groups. Invent. Math. 122 (1995), no. 1, 147–193. | DOI | MR | Zbl

[18] Wong, P.: Reidemeister number, Hirsch rank, coincidences on polycyclic groups and solvmanifolds. J. Reine Angew. Math. 524 (2000), 185–204. | MR | Zbl

Cité par Sources :