Natural transformations of connections on the first principal prolongation
Archivum mathematicum, Tome 50 (2014) no. 1, pp. 21-25.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider a vector bundle $E\rightarrow M$ and the principal bundle $PE$ of frames of $E$. We determine all natural transformations of the connection bundle of the first order principal prolongation of principal bundle $PE$ into itself.
DOI : 10.5817/AM2014-1-21
Classification : 53C05, 58A32
Keywords: natural bundle; gauge-natural bundle; natural operator; principal bundle; principal connection
@article{10_5817_AM2014_1_21,
     author = {Vondra, Jan},
     title = {Natural transformations of connections on the first principal prolongation},
     journal = {Archivum mathematicum},
     pages = {21--25},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2014},
     doi = {10.5817/AM2014-1-21},
     mrnumber = {3194765},
     zbl = {06391562},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-1-21/}
}
TY  - JOUR
AU  - Vondra, Jan
TI  - Natural transformations of connections on the first principal prolongation
JO  - Archivum mathematicum
PY  - 2014
SP  - 21
EP  - 25
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-1-21/
DO  - 10.5817/AM2014-1-21
LA  - en
ID  - 10_5817_AM2014_1_21
ER  - 
%0 Journal Article
%A Vondra, Jan
%T Natural transformations of connections on the first principal prolongation
%J Archivum mathematicum
%D 2014
%P 21-25
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-1-21/
%R 10.5817/AM2014-1-21
%G en
%F 10_5817_AM2014_1_21
Vondra, Jan. Natural transformations of connections on the first principal prolongation. Archivum mathematicum, Tome 50 (2014) no. 1, pp. 21-25. doi : 10.5817/AM2014-1-21. http://geodesic.mathdoc.fr/articles/10.5817/AM2014-1-21/

Cité par Sources :