@article{10_5817_AM2013_5_347,
author = {Van\v{z}urov\'a, Alena},
title = {On metrizability of locally homogeneous affine 2-dimensional manifolds},
journal = {Archivum mathematicum},
pages = {347--357},
year = {2013},
volume = {49},
number = {5},
doi = {10.5817/AM2013-5-347},
mrnumber = {3159333},
zbl = {06383796},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-347/}
}
TY - JOUR AU - Vanžurová, Alena TI - On metrizability of locally homogeneous affine 2-dimensional manifolds JO - Archivum mathematicum PY - 2013 SP - 347 EP - 357 VL - 49 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-347/ DO - 10.5817/AM2013-5-347 LA - en ID - 10_5817_AM2013_5_347 ER -
Vanžurová, Alena. On metrizability of locally homogeneous affine 2-dimensional manifolds. Archivum mathematicum, Tome 49 (2013) no. 5, pp. 347-357. doi: 10.5817/AM2013-5-347
[1] Arias–Marco, T., Kowalski, O.: Classification of locally homogeneous affine connections with arbitrary torsion on 2–dimensional manifolds. Monatsh. Math. 153 (1) (2008), 1–18. | DOI | MR | Zbl
[2] Eisenhart, L.P., Veblen, O.: The Riemann geometry and its generalization. Proc. London Math. Soc. 8 (1922), 19–23.
[3] Jost, J.: Riemannian Geometry and Geometric Analysis. Springer, Berlin, Heidelberg, New York, 2005. | MR | Zbl
[4] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I, II. Wiley–Intersc. Publ., New York, Chichester, Brisbane, Toronto, Singapore, 1991.
[5] Kowalski, O.: On regular curvature structures. Math. Z. 125 (1972), 129–138. | DOI | Zbl
[6] Kowalski, O.: Metrizability of affine connections on analytic manifolds. Note Mat. 8 (1) (1988), 1–11. | Zbl
[7] Kowalski, O., Opozda, B., Vlášek, Z.: Curvature homogeneity of affine connections on two-dimensional manifolds. Colloq. Math. 81 (1) (1999), 123–139. | Zbl
[8] Kowalski, O., Opozda, B., Vlášek, Z.: A classification of locally homogeneous affine connections with skew-symmetric Ricci tensor on 2–dimensional manifolds. Monatsh. Math. 130 (2000), 109–125. | DOI | Zbl
[9] Kowalski, O., Opozda, B., Vlášek, Z.: A classification of locally homogeneous connections on 2–dimensional manifolds via group–theoretical approach. CEJM 2 (1) (2004), 87–102. | MR | Zbl
[10] Lovelock, D., Rund, H.: Tensors, Differential Forms, and Variational Principle. A. Wiley Intersc. Publ., New York, London, Sydney, 1975.
[11] Nomizu, K., Sasaki, T.: Affine Differential Geometry. Geometry of Affine Immersions. Cambridge Univ. Press, 1994.
[12] Olver, P. J.: Equivalence, Invariants and Symmetry. Cambridge: Univ. Press, 1995. | Zbl
[13] Opozda, B.: On curvature homogeneous and locally homogeneous affine connections. Proc. Amer. Math. Soc. 124 (6) (1996), 1889–1893. | DOI | Zbl
[14] Opozda, B.: A classification of locally homogeneous connections on 2–dimensional manifolds. Differential Geom. Appl. 21 (2004), 173–198. | DOI | MR | Zbl
[15] Petrov, A. Z.: Einstein Spaces. Moscow, 1961, in Russian.
[16] Vanžurová, A.: Metrization of linear connections, holonomy groups and holonomy algebras. Acta Phys. Debrecina 42 (2008), 39–48.
[17] Vanžurová, A.: Metrization problem for linear connections and holonomy algebras. Arch. Math. (Brno) 44 (2008), 339–348. | Zbl
[18] Vanžurová, A.: Metrization of connections with regular curvature. Arch. Math. (Brno) 45 (4) (2009), 325–333. | MR | Zbl
[19] Vanžurová, A., Žáčková, P.: Metrizability of connections on two–manifolds. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 48 (2009), 157–170. | MR | Zbl
[20] Vanžurová, A., Žáčková, P.: Metrization of linear connections. Aplimat 2009: 8th International Conference Proceedings 2 (2009), 151–163.
Cité par Sources :