Keywords: Clifford analysis; parabolic Dirac operator; Cartan-Kähler theorem
@article{10_5817_AM2013_5_333,
author = {Sala\v{c}, Tom\'a\v{s}},
title = {$k${-Dirac} operator and the {Cartan-K\"ahler} theorem},
journal = {Archivum mathematicum},
pages = {333--346},
year = {2013},
volume = {49},
number = {5},
doi = {10.5817/AM2013-5-333},
mrnumber = {3159332},
zbl = {06383795},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-333/}
}
Salač, Tomáš. $k$-Dirac operator and the Cartan-Kähler theorem. Archivum mathematicum, Tome 49 (2013) no. 5, pp. 333-346. doi: 10.5817/AM2013-5-333
[1] Bryant, R. L., Chern, S. S., Gardner, R. B, Goldschmidt, H. L., Griffits, P. A.: Exterior differential systems. Springer Verlag, 1991.
[2] Čap, A., Slovák, J.: Parabolic Geometries I, Background and General Theory. American Mathematical Society, Providence, 2009. | MR | Zbl
[3] Colombo, F., Sabadini, I., Sommen, F., Struppa, D. C.: Analysis of Dirac Systems and Computational Algebra. Birkhauser, Boston, 2004. | MR | Zbl
[4] Goodman, R., Wallach, N. R.: Representations and Invariants of the Classical Groups. Cambridge University Press, 1998. | Zbl
[5] Ivey, T. A., Landsberg, J. M.: Cartan for beginners: Differential geometry via moving frames and exterior differential systems. American Mathematical Society, 2003. | MR | Zbl
[6] Morimoto, T.: Generalized Spencer cohomology groups and quasi-regular bases. Tokyo J. Math. 14 (1) (1991), 165–179. | DOI | Zbl
[7] Sabadini, I., Sommen, F., Struppa, D. C., van Lancker, P.: Complexes of Dirac operators in Clifford algebras. Math. Z. 239 (2) (2002), 293–320. | DOI | MR | Zbl
[8] Salač, T.: The generalized Dolbeault complexes in Clifford analysis. Ph.D. thesis, MFF UK, MÚUK, Prague, 2012.
[9] Salač, T.: k-Dirac operator and parabolic geometries.Complex Analysis and Operator Theory. Complex Analysis and Operator Theory, SP Birkhäuser Verlag Basel, 2013. DOI: | DOI | MR
[10] Souček, V.: Analogues of the Dolbeault complex and the separation of variables. in M. Eastwood, V. Miller, Symmetries and overdetermined systems of partial differential equations. The IMA volumes in Math. and its Appl., Springer, New York, 2007, pp. 537–550. | MR
Cité par Sources :