$k$-Dirac operator and the Cartan-Kähler theorem
Archivum mathematicum, Tome 49 (2013) no. 5, pp. 333-346 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We apply the Cartan-Kähler theorem for the k-Dirac operator studied in Clifford analysis and to the parabolic version of this operator. We show that for $k=2$ the tableaux of the first prolongations of these two operators are involutive. This gives us a new characterization of the set of initial conditions for the 2-Dirac operator.
We apply the Cartan-Kähler theorem for the k-Dirac operator studied in Clifford analysis and to the parabolic version of this operator. We show that for $k=2$ the tableaux of the first prolongations of these two operators are involutive. This gives us a new characterization of the set of initial conditions for the 2-Dirac operator.
DOI : 10.5817/AM2013-5-333
Classification : 53C27, 58A15, 58A17
Keywords: Clifford analysis; parabolic Dirac operator; Cartan-Kähler theorem
@article{10_5817_AM2013_5_333,
     author = {Sala\v{c}, Tom\'a\v{s}},
     title = {$k${-Dirac} operator and the {Cartan-K\"ahler} theorem},
     journal = {Archivum mathematicum},
     pages = {333--346},
     year = {2013},
     volume = {49},
     number = {5},
     doi = {10.5817/AM2013-5-333},
     mrnumber = {3159332},
     zbl = {06383795},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-333/}
}
TY  - JOUR
AU  - Salač, Tomáš
TI  - $k$-Dirac operator and the Cartan-Kähler theorem
JO  - Archivum mathematicum
PY  - 2013
SP  - 333
EP  - 346
VL  - 49
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-333/
DO  - 10.5817/AM2013-5-333
LA  - en
ID  - 10_5817_AM2013_5_333
ER  - 
%0 Journal Article
%A Salač, Tomáš
%T $k$-Dirac operator and the Cartan-Kähler theorem
%J Archivum mathematicum
%D 2013
%P 333-346
%V 49
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-333/
%R 10.5817/AM2013-5-333
%G en
%F 10_5817_AM2013_5_333
Salač, Tomáš. $k$-Dirac operator and the Cartan-Kähler theorem. Archivum mathematicum, Tome 49 (2013) no. 5, pp. 333-346. doi: 10.5817/AM2013-5-333

[1] Bryant, R. L., Chern, S. S., Gardner, R. B, Goldschmidt, H. L., Griffits, P. A.: Exterior differential systems. Springer Verlag, 1991.

[2] Čap, A., Slovák, J.: Parabolic Geometries I, Background and General Theory. American Mathematical Society, Providence, 2009. | MR | Zbl

[3] Colombo, F., Sabadini, I., Sommen, F., Struppa, D. C.: Analysis of Dirac Systems and Computational Algebra. Birkhauser, Boston, 2004. | MR | Zbl

[4] Goodman, R., Wallach, N. R.: Representations and Invariants of the Classical Groups. Cambridge University Press, 1998. | Zbl

[5] Ivey, T. A., Landsberg, J. M.: Cartan for beginners: Differential geometry via moving frames and exterior differential systems. American Mathematical Society, 2003. | MR | Zbl

[6] Morimoto, T.: Generalized Spencer cohomology groups and quasi-regular bases. Tokyo J. Math. 14 (1) (1991), 165–179. | DOI | Zbl

[7] Sabadini, I., Sommen, F., Struppa, D. C., van Lancker, P.: Complexes of Dirac operators in Clifford algebras. Math. Z. 239 (2) (2002), 293–320. | DOI | MR | Zbl

[8] Salač, T.: The generalized Dolbeault complexes in Clifford analysis. Ph.D. thesis, MFF UK, MÚUK, Prague, 2012.

[9] Salač, T.: k-Dirac operator and parabolic geometries.Complex Analysis and Operator Theory. Complex Analysis and Operator Theory, SP Birkhäuser Verlag Basel, 2013. DOI:  | DOI | MR

[10] Souček, V.: Analogues of the Dolbeault complex and the separation of variables. in M. Eastwood, V. Miller, Symmetries and overdetermined systems of partial differential equations. The IMA volumes in Math. and its Appl., Springer, New York, 2007, pp. 537–550. | MR

Cité par Sources :