The F-method and a branching problem for generalized Verma modules associated to $({\mathrm{Lie~}G_2},{\operatorname{so}(7)})$
Archivum mathematicum, Tome 49 (2013) no. 5, pp. 317-332
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The branching problem for a couple of non-compatible Lie algebras and their parabolic subalgebras applied to generalized Verma modules was recently discussed in [15]. In the present article, we employ the recently developed F-method, [10], [11] to the couple of non-compatible Lie algebras $\mathrm{Lie~}G_2\stackrel{i}{\hookrightarrow }{\operatorname{so}(7)}$, and generalized conformal ${\operatorname{so}(7)}$-Verma modules of scalar type. As a result, we classify the $i({\mathrm{Lie~}G_2}) \cap {\mathfrak{p}}$-singular vectors for this class of $\operatorname{so}(7)$-modules.
DOI :
10.5817/AM2013-5-317
Classification :
13C10, 17B10, 22E47
Keywords: generalized Verma modules; conformal geometry in dimension $5$; exceptional Lie algebra ${\mathrm{Lie~}G_2}$; F-method; branching problem
Keywords: generalized Verma modules; conformal geometry in dimension $5$; exceptional Lie algebra ${\mathrm{Lie~}G_2}$; F-method; branching problem
@article{10_5817_AM2013_5_317,
author = {Milev, Todor and Somberg, Petr},
title = {The {F-method} and a branching problem for generalized {Verma} modules associated to $({\mathrm{Lie~}G_2},{\operatorname{so}(7)})$},
journal = {Archivum mathematicum},
pages = {317--332},
publisher = {mathdoc},
volume = {49},
number = {5},
year = {2013},
doi = {10.5817/AM2013-5-317},
mrnumber = {3159331},
zbl = {06383794},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-317/}
}
TY - JOUR
AU - Milev, Todor
AU - Somberg, Petr
TI - The F-method and a branching problem for generalized Verma modules associated to $({\mathrm{Lie~}G_2},{\operatorname{so}(7)})$
JO - Archivum mathematicum
PY - 2013
SP - 317
EP - 332
VL - 49
IS - 5
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-317/
DO - 10.5817/AM2013-5-317
LA - en
ID - 10_5817_AM2013_5_317
ER -
%0 Journal Article
%A Milev, Todor
%A Somberg, Petr
%T The F-method and a branching problem for generalized Verma modules associated to $({\mathrm{Lie~}G_2},{\operatorname{so}(7)})$
%J Archivum mathematicum
%D 2013
%P 317-332
%V 49
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-317/
%R 10.5817/AM2013-5-317
%G en
%F 10_5817_AM2013_5_317
Milev, Todor; Somberg, Petr. The F-method and a branching problem for generalized Verma modules associated to $({\mathrm{Lie~}G_2},{\operatorname{so}(7)})$. Archivum mathematicum, Tome 49 (2013) no. 5, pp. 317-332. doi: 10.5817/AM2013-5-317
Cité par Sources :