Keywords: generalized Verma modules; conformal geometry in dimension $5$; exceptional Lie algebra ${\mathrm{Lie~}G_2}$; F-method; branching problem
@article{10_5817_AM2013_5_317,
author = {Milev, Todor and Somberg, Petr},
title = {The {F-method} and a branching problem for generalized {Verma} modules associated to $({\mathrm{Lie~}G_2},{\operatorname{so}(7)})$},
journal = {Archivum mathematicum},
pages = {317--332},
year = {2013},
volume = {49},
number = {5},
doi = {10.5817/AM2013-5-317},
mrnumber = {3159331},
zbl = {06383794},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-317/}
}
TY - JOUR
AU - Milev, Todor
AU - Somberg, Petr
TI - The F-method and a branching problem for generalized Verma modules associated to $({\mathrm{Lie~}G_2},{\operatorname{so}(7)})$
JO - Archivum mathematicum
PY - 2013
SP - 317
EP - 332
VL - 49
IS - 5
UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-317/
DO - 10.5817/AM2013-5-317
LA - en
ID - 10_5817_AM2013_5_317
ER -
%0 Journal Article
%A Milev, Todor
%A Somberg, Petr
%T The F-method and a branching problem for generalized Verma modules associated to $({\mathrm{Lie~}G_2},{\operatorname{so}(7)})$
%J Archivum mathematicum
%D 2013
%P 317-332
%V 49
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-317/
%R 10.5817/AM2013-5-317
%G en
%F 10_5817_AM2013_5_317
Milev, Todor; Somberg, Petr. The F-method and a branching problem for generalized Verma modules associated to $({\mathrm{Lie~}G_2},{\operatorname{so}(7)})$. Archivum mathematicum, Tome 49 (2013) no. 5, pp. 317-332. doi: 10.5817/AM2013-5-317
[1] Čap, A., Slovák, J.: Parabolic geometries, I: Background and General Theory. Mathematical Surveys and Monographs, American Mathematical Society, 2009. | MR | Zbl
[2] Dixmier, J.: Algebres Enveloppantes. Gauthier-Villars Editeur, Paris–Bruxelles–Montreal, 1974. | Zbl
[3] Eastwood, M. G., Graham, C. R.: Invariants of conformal densities. Duke Math. J. 63 (1991), 633–671. | DOI | Zbl
[4] Graham, R. C., Willse, T.: Parallel tractor extension and ambient metrics of holonomy split $G_2$. http://xxx.lanl.gov/abs/1109.3504 | Zbl
[5] Humphreys, J. E., Jr., : Representations of Semisimple Lie Algebras in the BGG Category $ {\mathcal{O}}$. Graduate Studies in Mathematics, vol. 94, American Mathematical Society, 2008. | MR
[6] Juhl, A.: Families of conformally covariant differential operators, Q–curvature and holography. Progress in Math., Birkhäuser, 2009. | MR | Zbl
[7] Kobayashi, T.: Discrete decomposability of the restriction of $A_{\mathfrak{q}}( \lambda )$ with respect to reductive subgroups and its applications. Invent. Math. 117 (1994), 181–205, Part II, Ann. of Math. (2) 147 (1998), 709–729; Part III, Invent. Math. 131 (1998), 229–256. | DOI
[8] Kobayashi, T.: Multiplicity–free theorems of the restriction of unitary highest weight modules with respect to reductive symmetric pairs. Progress in Math, vol. 280, Birkhäuser, 2007, pp. 45–109. | MR
[9] Kobayashi, T.: Restrictions of generalized Verma modules to symmetric pairs. Transform. Groups 17 (2012), 523–546. | DOI | MR | Zbl
[10] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry, I. preprint.
[11] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry, II. preprint.
[12] Kostant, B.: Verma modules and the existence of quasi–invariant differential operators. Lecture Notes in Math., Springer Verlag, 1974, pp. 101–129.
[13] Lepowsky, J.: A generalization of the Bernstein–Gelfand–Gelfand resolution. J. Algebra 49 (1977), 496–511. | DOI | Zbl
[14] Matumoto, H.: The homomorphisms between scalar generalized Verma modules associated to maximal parabolic subalgebras. Duke Math. J. 131 (2006), 75–118. | DOI | MR | Zbl
[15] Milev, T., Somberg, P.: The branching problem for generalized Verma modules, with application to the pair $(\operatorname{so}(7), \operatorname{Lie}\, G_2)$. http://xxx.lanl.gov/abs/1209.3970
Cité par Sources :