The F-method and a branching problem for generalized Verma modules associated to $({\mathrm{Lie~}G_2},{\operatorname{so}(7)})$
Archivum mathematicum, Tome 49 (2013) no. 5, pp. 317-332 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The branching problem for a couple of non-compatible Lie algebras and their parabolic subalgebras applied to generalized Verma modules was recently discussed in [15]. In the present article, we employ the recently developed F-method, [10], [11] to the couple of non-compatible Lie algebras $\mathrm{Lie~}G_2\stackrel{i}{\hookrightarrow }{\operatorname{so}(7)}$, and generalized conformal ${\operatorname{so}(7)}$-Verma modules of scalar type. As a result, we classify the $i({\mathrm{Lie~}G_2}) \cap {\mathfrak{p}}$-singular vectors for this class of $\operatorname{so}(7)$-modules.
The branching problem for a couple of non-compatible Lie algebras and their parabolic subalgebras applied to generalized Verma modules was recently discussed in [15]. In the present article, we employ the recently developed F-method, [10], [11] to the couple of non-compatible Lie algebras $\mathrm{Lie~}G_2\stackrel{i}{\hookrightarrow }{\operatorname{so}(7)}$, and generalized conformal ${\operatorname{so}(7)}$-Verma modules of scalar type. As a result, we classify the $i({\mathrm{Lie~}G_2}) \cap {\mathfrak{p}}$-singular vectors for this class of $\operatorname{so}(7)$-modules.
DOI : 10.5817/AM2013-5-317
Classification : 13C10, 17B10, 22E47
Keywords: generalized Verma modules; conformal geometry in dimension $5$; exceptional Lie algebra ${\mathrm{Lie~}G_2}$; F-method; branching problem
@article{10_5817_AM2013_5_317,
     author = {Milev, Todor and Somberg, Petr},
     title = {The {F-method} and a branching problem for generalized {Verma} modules associated to $({\mathrm{Lie~}G_2},{\operatorname{so}(7)})$},
     journal = {Archivum mathematicum},
     pages = {317--332},
     year = {2013},
     volume = {49},
     number = {5},
     doi = {10.5817/AM2013-5-317},
     mrnumber = {3159331},
     zbl = {06383794},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-317/}
}
TY  - JOUR
AU  - Milev, Todor
AU  - Somberg, Petr
TI  - The F-method and a branching problem for generalized Verma modules associated to $({\mathrm{Lie~}G_2},{\operatorname{so}(7)})$
JO  - Archivum mathematicum
PY  - 2013
SP  - 317
EP  - 332
VL  - 49
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-317/
DO  - 10.5817/AM2013-5-317
LA  - en
ID  - 10_5817_AM2013_5_317
ER  - 
%0 Journal Article
%A Milev, Todor
%A Somberg, Petr
%T The F-method and a branching problem for generalized Verma modules associated to $({\mathrm{Lie~}G_2},{\operatorname{so}(7)})$
%J Archivum mathematicum
%D 2013
%P 317-332
%V 49
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-317/
%R 10.5817/AM2013-5-317
%G en
%F 10_5817_AM2013_5_317
Milev, Todor; Somberg, Petr. The F-method and a branching problem for generalized Verma modules associated to $({\mathrm{Lie~}G_2},{\operatorname{so}(7)})$. Archivum mathematicum, Tome 49 (2013) no. 5, pp. 317-332. doi: 10.5817/AM2013-5-317

[1] Čap, A., Slovák, J.: Parabolic geometries, I: Background and General Theory. Mathematical Surveys and Monographs, American Mathematical Society, 2009. | MR | Zbl

[2] Dixmier, J.: Algebres Enveloppantes. Gauthier-Villars Editeur, Paris–Bruxelles–Montreal, 1974. | Zbl

[3] Eastwood, M. G., Graham, C. R.: Invariants of conformal densities. Duke Math. J. 63 (1991), 633–671. | DOI | Zbl

[4] Graham, R. C., Willse, T.: Parallel tractor extension and ambient metrics of holonomy split $G_2$. http://xxx.lanl.gov/abs/1109.3504 | Zbl

[5] Humphreys, J. E., Jr., : Representations of Semisimple Lie Algebras in the BGG Category $ {\mathcal{O}}$. Graduate Studies in Mathematics, vol. 94, American Mathematical Society, 2008. | MR

[6] Juhl, A.: Families of conformally covariant differential operators, Q–curvature and holography. Progress in Math., Birkhäuser, 2009. | MR | Zbl

[7] Kobayashi, T.: Discrete decomposability of the restriction of $A_{\mathfrak{q}}( \lambda )$ with respect to reductive subgroups and its applications. Invent. Math. 117 (1994), 181–205, Part II, Ann. of Math. (2) 147 (1998), 709–729; Part III, Invent. Math. 131 (1998), 229–256. | DOI

[8] Kobayashi, T.: Multiplicity–free theorems of the restriction of unitary highest weight modules with respect to reductive symmetric pairs. Progress in Math, vol. 280, Birkhäuser, 2007, pp. 45–109. | MR

[9] Kobayashi, T.: Restrictions of generalized Verma modules to symmetric pairs. Transform. Groups 17 (2012), 523–546. | DOI | MR | Zbl

[10] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry, I. preprint.

[11] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry, II. preprint.

[12] Kostant, B.: Verma modules and the existence of quasi–invariant differential operators. Lecture Notes in Math., Springer Verlag, 1974, pp. 101–129.

[13] Lepowsky, J.: A generalization of the Bernstein–Gelfand–Gelfand resolution. J. Algebra 49 (1977), 496–511. | DOI | Zbl

[14] Matumoto, H.: The homomorphisms between scalar generalized Verma modules associated to maximal parabolic subalgebras. Duke Math. J. 131 (2006), 75–118. | DOI | MR | Zbl

[15] Milev, T., Somberg, P.: The branching problem for generalized Verma modules, with application to the pair $(\operatorname{so}(7), \operatorname{Lie}\, G_2)$. http://xxx.lanl.gov/abs/1209.3970

Cité par Sources :