Keywords: $L_\infty $ algebra; $A_\infty $ algebra; strong homotopy derivation
@article{10_5817_AM2013_5_309,
author = {Lada, Tom and Tolley, Melissa},
title = {Derivations of homotopy algebras},
journal = {Archivum mathematicum},
pages = {309--315},
year = {2013},
volume = {49},
number = {5},
doi = {10.5817/AM2013-5-309},
mrnumber = {3159330},
zbl = {06383793},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-309/}
}
Lada, Tom; Tolley, Melissa. Derivations of homotopy algebras. Archivum mathematicum, Tome 49 (2013) no. 5, pp. 309-315. doi: 10.5817/AM2013-5-309
[1] Allocca, M., Lada, T.: A finite dimensional $A_\infty $ algebra example. Georgian Math. J. 12 (10) (2010), 1–12. | MR | Zbl
[2] Kajiura, H., Stasheff, J.: Homotopy algebras inspired by classical open–closed string field theory. Comm. Math. Phys. 263 (3) (2006), 553–581. | DOI | MR | Zbl
[3] Lada, T.: Commutators of $A_\infty $ structures. Contemporary Mathematics, 1999, pp. 227–233. | Zbl
[4] Lada, T., Markl, M.: Strongly homotopy Lie algebras. Comm. Algebra 23 (6) (1995), 2147–2161. | DOI | Zbl
[5] Lada, T., Stasheff, J.: Introduction to SH Lie algebras for physicists. Internat. J. Theoret. Phys. 32 (7) (1993), 1087–1103. | DOI | Zbl
[6] Stasheff, J.: Homotopy associativity of H-spaces II. Trans. Amer. Math. Soc. 108 (1963), 293–312.
[7] Tolley, M.: The connections between $A_\infty $ and $L_\infty $ algebras. Ph.D. thesis, NCSU, 2013.
Cité par Sources :