Derivations of homotopy algebras
Archivum mathematicum, Tome 49 (2013) no. 5, pp. 309-315 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We recall the definition of strong homotopy derivations of $A_\infty $ algebras and introduce the corresponding definition for $L_\infty $ algebras. We define strong homotopy inner derivations for both algebras and exhibit explicit examples of both.
We recall the definition of strong homotopy derivations of $A_\infty $ algebras and introduce the corresponding definition for $L_\infty $ algebras. We define strong homotopy inner derivations for both algebras and exhibit explicit examples of both.
DOI : 10.5817/AM2013-5-309
Classification : 18G55
Keywords: $L_\infty $ algebra; $A_\infty $ algebra; strong homotopy derivation
@article{10_5817_AM2013_5_309,
     author = {Lada, Tom and Tolley, Melissa},
     title = {Derivations of homotopy algebras},
     journal = {Archivum mathematicum},
     pages = {309--315},
     year = {2013},
     volume = {49},
     number = {5},
     doi = {10.5817/AM2013-5-309},
     mrnumber = {3159330},
     zbl = {06383793},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-309/}
}
TY  - JOUR
AU  - Lada, Tom
AU  - Tolley, Melissa
TI  - Derivations of homotopy algebras
JO  - Archivum mathematicum
PY  - 2013
SP  - 309
EP  - 315
VL  - 49
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-309/
DO  - 10.5817/AM2013-5-309
LA  - en
ID  - 10_5817_AM2013_5_309
ER  - 
%0 Journal Article
%A Lada, Tom
%A Tolley, Melissa
%T Derivations of homotopy algebras
%J Archivum mathematicum
%D 2013
%P 309-315
%V 49
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-309/
%R 10.5817/AM2013-5-309
%G en
%F 10_5817_AM2013_5_309
Lada, Tom; Tolley, Melissa. Derivations of homotopy algebras. Archivum mathematicum, Tome 49 (2013) no. 5, pp. 309-315. doi: 10.5817/AM2013-5-309

[1] Allocca, M., Lada, T.: A finite dimensional $A_\infty $ algebra example. Georgian Math. J. 12 (10) (2010), 1–12. | MR | Zbl

[2] Kajiura, H., Stasheff, J.: Homotopy algebras inspired by classical open–closed string field theory. Comm. Math. Phys. 263 (3) (2006), 553–581. | DOI | MR | Zbl

[3] Lada, T.: Commutators of $A_\infty $ structures. Contemporary Mathematics, 1999, pp. 227–233. | Zbl

[4] Lada, T., Markl, M.: Strongly homotopy Lie algebras. Comm. Algebra 23 (6) (1995), 2147–2161. | DOI | Zbl

[5] Lada, T., Stasheff, J.: Introduction to SH Lie algebras for physicists. Internat. J. Theoret. Phys. 32 (7) (1993), 1087–1103. | DOI | Zbl

[6] Stasheff, J.: Homotopy associativity of H-spaces II. Trans. Amer. Math. Soc. 108 (1963), 293–312.

[7] Tolley, M.: The connections between $A_\infty $ and $L_\infty $ algebras. Ph.D. thesis, NCSU, 2013.

Cité par Sources :