On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds
Archivum mathematicum, Tome 49 (2013) no. 5, pp. 295-302 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study fundamental equations of holomorphically projective mappings from manifolds with equiaffine connection onto (pseudo-) Kähler manifolds with respect to the smoothness class of connection and metrics. We show that holomorphically projective mappings preserve the smoothness class of connections and metrics.
In this paper we study fundamental equations of holomorphically projective mappings from manifolds with equiaffine connection onto (pseudo-) Kähler manifolds with respect to the smoothness class of connection and metrics. We show that holomorphically projective mappings preserve the smoothness class of connections and metrics.
DOI : 10.5817/AM2013-5-295
Classification : 32Q15, 53B20, 53B21, 53B30, 53B35, 53C26
Keywords: holomorphically projective mapping; smoothness class; Kähler manifold; manifold with affine connection; fundamental equation
@article{10_5817_AM2013_5_295,
     author = {Hinterleitner, Irena and Mike\v{s}, Josef},
     title = {On holomorphically projective mappings from manifolds with equiaffine connection onto {K\"ahler} manifolds},
     journal = {Archivum mathematicum},
     pages = {295--302},
     year = {2013},
     volume = {49},
     number = {5},
     doi = {10.5817/AM2013-5-295},
     mrnumber = {3159328},
     zbl = {06383791},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-295/}
}
TY  - JOUR
AU  - Hinterleitner, Irena
AU  - Mikeš, Josef
TI  - On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds
JO  - Archivum mathematicum
PY  - 2013
SP  - 295
EP  - 302
VL  - 49
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-295/
DO  - 10.5817/AM2013-5-295
LA  - en
ID  - 10_5817_AM2013_5_295
ER  - 
%0 Journal Article
%A Hinterleitner, Irena
%A Mikeš, Josef
%T On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds
%J Archivum mathematicum
%D 2013
%P 295-302
%V 49
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-295/
%R 10.5817/AM2013-5-295
%G en
%F 10_5817_AM2013_5_295
Hinterleitner, Irena; Mikeš, Josef. On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds. Archivum mathematicum, Tome 49 (2013) no. 5, pp. 295-302. doi: 10.5817/AM2013-5-295

[1] al Lami, R. J. K., Škodová, M., Mikeš, J.: On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces. Arch. Math. (Brno) 42 (5) (2006), 291–299. | MR | Zbl

[2] Alekseevsky, D. V., Marchiafava, S.: Transformation of a quaternionic Kaehlerian manifold. C. R. Acad. Sci. Paris, Ser. I 320 (1995), 703–708.

[3] Apostolov, V., Calderbank, D. M. J., Gauduchon, P., Tønnesen–Friedman, Ch. W.: Extremal Kähler metrics on projective bundles over a curve. Adv. Math. 227 (6) (2011), 2385–2424. | DOI | MR | Zbl

[4] Beklemishev, D.V.: Differential geometry of spaces with almost complex structure. Geometria. Itogi Nauki i Tekhn., VINITI, Akad. Nauk SSSR, Moscow (1965), 165–212.

[5] Domashev, V. V., Mikeš, J.: Theory of holomorphically projective mappings of Kählerian spaces. Math. Notes 23 (1978), 160–163, transl. from Mat. Zametki 23(2) (1978), 297–304. | DOI

[6] Eisenhart, L. P.: Non–Riemannian Geometry. Princeton Univ. Press, 1926, AMS Colloq. Publ. 8 (2000).

[7] Hinterleitner, I.: On holomorphically projective mappings of e–Kähler manifolds. Arch. Math. (Brno) 48 (2012), 333–338. | DOI | MR | Zbl

[8] Hinterleitner, I., Mikeš, J.: On F–planar mappings of spaces with affine connections. Note Mat. 27 (2007), 111–118. | MR | Zbl

[9] Hinterleitner, I., Mikeš, J.: Fundamental equations of geodesic mappings and their generalizations. J. Math. Sci. 174 (5) (2011), 537–554. | DOI | Zbl

[10] Hinterleitner, I., Mikeš, J.: Projective equivalence and spaces with equi–affine connection. J. Math. Sci. 177 (2011), 546–550, transl. from Fundam. Prikl. Mat. 16 (2010), 47–54. | DOI | MR

[11] Hinterleitner, I., Mikeš, J.: Geodesic Mappings and Einstein Spaces. Geometric Methods in Physics, Birkhäuser Basel, 2013, arXiv: 1201.2827v1 [math.DG], 2012, pp. 331–336. | Zbl

[12] Hinterleitner, I., Mikeš, J.: Geodesic mappings of (pseudo-) Riemannian manifolds preserve class of differentiability. Miskolc Math. Notes 14 (2) (2013), 575–582. | MR | Zbl

[13] Hrdina, J.: Almost complex projective structures and their morphisms. Arch. Math. (Brno) 45 (2009), 255–264. | MR | Zbl

[14] Hrdina, J., Slovák, J.: Morphisms of almost product projective geometries. Proc. 10th Int. Conf. on Diff. Geom. and its Appl., DGA 2007, Olomouc, Hackensack, NJ: World Sci., 2008, pp. 253–261. | MR | Zbl

[15] Jukl, M., Juklová, L., Mikeš, J.: Some results on traceless decomposition of tensors. J. Math. Sci. 174 (2011), 627–640. | DOI

[16] Mikeš, J.: On holomorphically projective mappings of Kählerian spaces. Ukrain. Geom. Sb. 23 (1980), 90–98. | Zbl

[17] Mikeš, J.: Special F—planar mappings of affinely connected spaces onto Riemannian spaces. Moscow Univ. Math. Bull. 49 (1994), 15–21, transl. from Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1994, 18–24. | Zbl

[18] Mikeš, J.: Holomorphically projective mappings and their generalizations. J. Math. Sci. 89 (1998), 13334–1353. | DOI

[19] Mikeš, J., Pokorná, O.: On holomorphically projective mappings onto Kählerian spaces. Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 181–186. | MR | Zbl

[20] Mikeš, J., Shiha, M., Vanžurová, A.: Invariant objects by holomorphically projective mappings of Kähler spaces. 8th Int. Conf. APLIMAT 2009, 2009, pp. 439–444.

[21] Mikeš, J., Sinyukov, N. S.: On quasiplanar mappings of space of affine connection. Sov. Math. 27 (1983), 63–70, transl. from Izv. Vyssh. Uchebn. Zaved. Mat..

[22] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and some Generalizations. Palacky University Press, Olomouc, 2009. | MR | Zbl

[23] Otsuki, T., Tashiro, Y.: On curves in Kaehlerian spaces. Math. J. Okayama Univ. 4 (1954), 57–78. | Zbl

[24] Petrov, A . Z.: Simulation of physical fields. Gravitatsiya i Teor. Otnositelnosti 4–5 (1968), 7–21.

[25] Prvanović, M.: Holomorphically projective transformations in a locally product space. Math. Balkanica 1 (1971), 195–213.

[26] Sinyukov, N. S.: Geodesic mappings of Riemannian spaces. Moscow: Nauka, 1979. | Zbl

[27] Škodová, M., Mikeš, J., Pokorná, O.: On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces. Rend. Circ. Mat. Palermo (2) Suppl. 75 (2005), 309–316. | MR | Zbl

[28] Stanković, M. S., Zlatanović, M. L., Velimirović, L. S.: Equitorsion holomorphically projective mappings of generalized Kaehlerian space of the first kind. Czechoslovak Math. J. 60 (2010), 635–653. | DOI | MR | Zbl

[29] Yano, K.: Differential geometry on complex and almost complex spaces. vol. XII, Pergamon Press, 1965. | Zbl

Cité par Sources :