Keywords: annihilators; class group; circular (cyclotomic) units; compositum of quadratic fields
@article{10_5817_AM2013_4_209,
author = {Herman, Jan},
title = {Annihilators of the class group of a compositum of quadratic fields},
journal = {Archivum mathematicum},
pages = {209--222},
year = {2013},
volume = {49},
number = {4},
doi = {10.5817/AM2013-4-209},
mrnumber = {3159311},
zbl = {1299.11079},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-4-209/}
}
Herman, Jan. Annihilators of the class group of a compositum of quadratic fields. Archivum mathematicum, Tome 49 (2013) no. 4, pp. 209-222. doi: 10.5817/AM2013-4-209
[1] Greither, C., Kučera, R.: Annihilators for the class group of a cyclic field of prime power degree. Acta Arith. 112 (2) (2004), 177–198. | DOI | MR | Zbl
[2] Kučera, R.: On the class number of a compositum of real quadratic fields: an approach via circular units. Funct. Approx. Comment. Math. 39 (2008), 179–189. | DOI | MR | Zbl
[3] Lambek, J.: Lectures on rings and modules. 3rd ed., Chelsea Publishing Co., New York, 1988.
[4] Rubin, K.: Global units and ideal class groups. Invent. Math. 89 (1987), 511–526. | DOI | Zbl
[5] Sinnott, W.: On the Stickelberger ideal and the circular units of an abelian field. Invent. Math. 62 (1980), 181–234. | DOI | Zbl
[6] Thaine, F.: On the ideal class groups of real abelian number fields. Ann. of Math. (2) 128 (1988), 1–18. | Zbl
Cité par Sources :