Keywords: monotonicity; oscillatory solutions
@article{10_5817_AM2013_3_199,
author = {Bartu\v{s}ek, Miroslav and Kokologiannaki, Chrysi G.},
title = {Monotonicity properties of oscillatory solutions of differential equation $(a(t)\vert y^{\prime }\vert ^{p-1}y^{\prime })^{\prime }+f(t,y,y^{\prime })=0$},
journal = {Archivum mathematicum},
pages = {199--207},
year = {2013},
volume = {49},
number = {3},
doi = {10.5817/AM2013-3-199},
mrnumber = {3144182},
zbl = {06321158},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-3-199/}
}
TY - JOUR
AU - Bartušek, Miroslav
AU - Kokologiannaki, Chrysi G.
TI - Monotonicity properties of oscillatory solutions of differential equation $(a(t)\vert y^{\prime }\vert ^{p-1}y^{\prime })^{\prime }+f(t,y,y^{\prime })=0$
JO - Archivum mathematicum
PY - 2013
SP - 199
EP - 207
VL - 49
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-3-199/
DO - 10.5817/AM2013-3-199
LA - en
ID - 10_5817_AM2013_3_199
ER -
%0 Journal Article
%A Bartušek, Miroslav
%A Kokologiannaki, Chrysi G.
%T Monotonicity properties of oscillatory solutions of differential equation $(a(t)\vert y^{\prime }\vert ^{p-1}y^{\prime })^{\prime }+f(t,y,y^{\prime })=0$
%J Archivum mathematicum
%D 2013
%P 199-207
%V 49
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2013-3-199/
%R 10.5817/AM2013-3-199
%G en
%F 10_5817_AM2013_3_199
Bartušek, Miroslav; Kokologiannaki, Chrysi G. Monotonicity properties of oscillatory solutions of differential equation $(a(t)\vert y^{\prime }\vert ^{p-1}y^{\prime })^{\prime }+f(t,y,y^{\prime })=0$. Archivum mathematicum, Tome 49 (2013) no. 3, pp. 199-207. doi: 10.5817/AM2013-3-199
[1] Bartušek, M.: Monotonicity theorems concerning differential equations $y^{\prime \prime }+f(t,y,y^{\prime })=0$. Arch. Math. (Brno) 12 (4) (1976), 169–178. | MR
[2] Bartušek, M.: Monotonicity theorems for second order non-linear differential equations. Arch. Math. (Brno) 16 (3) (1980), 127–136. | MR
[3] Bartušek, M.: On properties of oscillatory solutions of nonlinear differential equations of the $n$-th order. Diff. Equat. and Their Appl., Equadiff 6, vol. 1192, Lecture Notes in Math., Berlin, 1985, pp. 107–113.
[4] Bartušek, M.: On oscillatory solutions of differential inequalities. Czechoslovak Math. J. 42 (117) (1992), 45–52. | MR | Zbl
[5] Bartušek, M.: Singular solutions for the differential equation with $p$-Laplacian. Arch. Math. (Brno) 41 (2005), 123–128. | MR | Zbl
[6] Bartušek, M., Došlá, Z., Cecchi, M., Marini, M.: On oscillatory solutions of quasilinear differential equations. J. Math. Anal. Appl. 320 (2006), 108–120. | DOI | MR | Zbl
[7] Došlá, Z., Cecchi, M., Marini, M.: On second order differential equations with nonhomogenous $\Phi $–Laplacian. Boundary Value Problems 2010 (2010), 17pp., ID 875675. | MR
[8] Došlá, Z., Háčik, M., Muldon, M. E.: Further higher monotonicity properties of Sturm-Liouville function. Arch. Math. (Brno) 29 (1993), 83–96. | MR
[9] Došlý, O., Řehák, P.: Half-linear differential equations. Elsevier, Amsterdam, 2005. | MR | Zbl
[10] Kiguradze, I., Chanturia, T.: Asymptotic properties of solutions of nonautonomous ordinary differential equations. Kluwer, Dordrecht, 1993. | Zbl
[11] Lorch, L., Muldon, M. E., Szego, P.: Higher monotonicity of certain Sturm-Liouville functions III. Canad. J. Math. 22 (1970), 1238–1265. | DOI | MR
[12] Mirzov, J. D.: Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equations. Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math., Masaryk University, Brno, 2001. | MR
[13] Naito, M.: Existence of positive solutions of higher-order quasilinear ordinary differential equations. Ann. Mat. Pura Appl. (4) 186 (2007), 59–84. | MR | Zbl
[14] Rohleder, M.: On the existence of oscillatory solutions of the second order nonlinear ODE. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 51 (2) (2012), 107–127. | MR | Zbl
Cité par Sources :