Solvable extensions of a special class of nilpotent Lie algebras
Archivum mathematicum, Tome 49 (2013) no. 3, pp. 141-159 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A pair of sequences of nilpotent Lie algebras denoted by $N_{n,11}$ and $N_{n,19}$ are introduced. Here $n$ denotes the dimension of the algebras that are defined for $n\ge 6$; the first term in the sequences are denoted by 6.11 and 6.19, respectively, in the standard list of six-dimensional Lie algebras. For each of $N_{n,11}$ and $N_{n,19}$ all possible solvable extensions are constructed so that $N_{n,11}$ and $N_{n,19}$ serve as the nilradical of the corresponding solvable algebras. The construction continues Winternitz’ and colleagues’ program of investigating solvable Lie algebras using special properties rather than trying to extend one dimension at a time.
A pair of sequences of nilpotent Lie algebras denoted by $N_{n,11}$ and $N_{n,19}$ are introduced. Here $n$ denotes the dimension of the algebras that are defined for $n\ge 6$; the first term in the sequences are denoted by 6.11 and 6.19, respectively, in the standard list of six-dimensional Lie algebras. For each of $N_{n,11}$ and $N_{n,19}$ all possible solvable extensions are constructed so that $N_{n,11}$ and $N_{n,19}$ serve as the nilradical of the corresponding solvable algebras. The construction continues Winternitz’ and colleagues’ program of investigating solvable Lie algebras using special properties rather than trying to extend one dimension at a time.
DOI : 10.5817/AM2013-3-141
Classification : 17B05, 17B30, 17B40
Keywords: solvable Lie algebra; nilradical; derivation
@article{10_5817_AM2013_3_141,
     author = {Shabanskaya, A. and Thompson, G.},
     title = {Solvable extensions of a special class of nilpotent {Lie} algebras},
     journal = {Archivum mathematicum},
     pages = {141--159},
     year = {2013},
     volume = {49},
     number = {3},
     doi = {10.5817/AM2013-3-141},
     mrnumber = {3144179},
     zbl = {06321155},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-3-141/}
}
TY  - JOUR
AU  - Shabanskaya, A.
AU  - Thompson, G.
TI  - Solvable extensions of a special class of nilpotent Lie algebras
JO  - Archivum mathematicum
PY  - 2013
SP  - 141
EP  - 159
VL  - 49
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-3-141/
DO  - 10.5817/AM2013-3-141
LA  - en
ID  - 10_5817_AM2013_3_141
ER  - 
%0 Journal Article
%A Shabanskaya, A.
%A Thompson, G.
%T Solvable extensions of a special class of nilpotent Lie algebras
%J Archivum mathematicum
%D 2013
%P 141-159
%V 49
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2013-3-141/
%R 10.5817/AM2013-3-141
%G en
%F 10_5817_AM2013_3_141
Shabanskaya, A.; Thompson, G. Solvable extensions of a special class of nilpotent Lie algebras. Archivum mathematicum, Tome 49 (2013) no. 3, pp. 141-159. doi: 10.5817/AM2013-3-141

[1] Ancochea, J. M., Campoamor–Stursberg, R., Garcia Vergnolle, L.: Solvable Lie algebras with naturally graded nilradicals and their invariants. J. Phys. A 39 (6) (2006), 1339–1355. | DOI | MR | Zbl

[2] Ancochea, J. M., Campoamor–Stursberg, R., Garcia Vergnolle, L.: Classification of Lie algebras with naturally graded quasi–filiform nilradicals. J. Geom. Phys. 61 (11) (2011), 2168–2186. | DOI | MR | Zbl

[3] Campoamor–Stursberg, R.: Solvable Lie algebras with an $\mathbb{N}$–graded nilradical of maximal nilpotency degree and their invariants. J. Phys. A 43 (14) (2010), 18pp., 145202. | DOI | MR

[4] Cartan, E.: Sur la structure des groupes de transformations finis et continus. Paris: These, Nony, 1894; 2nd ed. Vuibert, 1933. | Zbl

[5] Gantmacher, F.: On the classification of real simple Lie groups. Mat. Sb. (1950), 103–112.

[6] Gong, M.–P.: Classification of nilpotent Lie algebras of dimension $7$. Ph.D. thesis, University of Waterloo, 1998.

[7] Hindeleh, F., Thompson, G.: Seven dimensional Lie algebras with a four-dimensional nilradical. Algebras Groups Geom. 25 (3) (2008), 243–265. | MR | Zbl

[8] Humphreys, J.: Lie algebras and their representations. Springer, 1997.

[9] Jacobson, N.: Lie algebras. Interscience Publishers, 1962. | MR | Zbl

[10] Morozov, V. V.: Classification of nilpotent Lie algebras in dimension six. Izv. Vyssh. Uchebn. Zaved. Mat. 4 (5) (1958), 161–171. | MR

[11] Mubarakzyanov, G. M.: Classification of real Lie algebras in dimension five. Izv. Vyssh. Uchebn. Zaved. Mat. 3 (34) (1963), 99–106. | MR

[12] Mubarakzyanov, G. M.: Classification of solvable Lie algebras in dimension six with one non-nilpotent basis element. Izv. Vyssh. Uchebn. Zaved. Mat. 4 (35) (1963), 104–116. | MR

[13] Mubarakzyanov, G. M.: On solvable Lie algebras. Izv. Vyssh. Uchebn. Zaved. Mat. 1 (32) (1963), 114–123. | MR | Zbl

[14] Ndogmo, J. C., Winternitz, P.: Solvable Lie algebras with abelian nilradicals. J. Phys. A 27 (2) (1994), 405–423. | DOI | MR | Zbl

[15] Patera, J., Sharp, R. T., Winternitz, P., Zassenhaus, H.: Invariants of real low dimension Lie algebras. J. Math. Phys. 17 (1976), 986–994. | DOI | MR | Zbl

[16] Rubin, J. L., Winternitz, P.: Solvable Lie algebras with Heisenberg ideals. J. Phys. A 26 (1993), 1123–1138. | DOI | MR | Zbl

[17] Seeley, C.: $7$–dimensional nilpotent Lie algebra. Trans. Amer. Math. Soc. 335 (2) (1993), 479–496. | MR

[18] Shabanskaya, A.: Classification of six dimensional solvable indecomposable Lie algebras with a codimension one nilradical over $\mathbb{R}$. Ph.D. thesis, University of Toledo, 2011. | MR

[19] Shabanskaya, A., Thompson, G.: Six–dimensional Lie algebras with a five–dimensional nilradical. J. Lie Theory 23 (2) (2013), 313–355. | MR | Zbl

[20] Skjelbred, T., Sund, T.: Classification of nilpotent Lie algebras in dimension six. University of Oslo, 1977, preprint.

[21] Snobl, L.: On the structure of maximal solvable extensions and of Levi extensions of nilpotent Lie algebras. J. Phys. A 43 (50) (2010), 17pp. | DOI | MR | Zbl

[22] Snobl, L.: Maximal solvable extensions of filiform algebras. Arch. Math. (Brno 47 (5) (2011), 405–414. | MR | Zbl

[23] Snobl, L., Karasek, D.: Classification of solvable Lie algebras with a given nilradical by means of solvable extensions of its subalgebras. Linear Algebra Appl. 432 (7) (2010), 18/36–1850. | DOI | MR | Zbl

[24] Snobl, L., Winternitz, P.: A class of solvable Lie algebras and their Casimir invariants. J. Phys. A 38 (12) (2005), 2687–2700. | DOI | MR | Zbl

[25] Snobl, L., Winternitz, P.: All solvable extensions of a class of nilpotent Lie algebras of dimension $n$ and degree of nilpotency $n-1$. J. Phys. A 2009 (2009), 16pp., 105201. | MR | Zbl

[26] Tremblay, S., Winternitz, P.: Solvable Lie algebras with triangular nilradicals. J. Phys. A. 31 (2) (1998), 789–806. | DOI | MR | Zbl

[27] Turkowski, P.: Solvable Lie algebras of dimension six. J. Math. Phys. 31 (6) (1990), 1344–1350. | DOI | MR | Zbl

[28] Umlauf, K. A.: Über die Zusammensetzung der endlichen continuierliche Transformationgruppen insbesondere der Gruppen von Rang null. Ph.D. thesis, University of Leipzig, 1891.

[29] Vergne, M.: Cohomologie des algèbres de Lie nilpotentes. Application a l’étude de la variété des algebres de Lie nilpotentes. Bull. Math. Soc. France 78 (1970), 81–116. | MR | Zbl

[30] Wang, Y., Lin, J., Deng, S.: Solvable Lie algebras with quasifiliform nilradicals. Comm. Algebra 36 (11) (2008), 4052–4067. | DOI | MR | Zbl

Cité par Sources :