Keywords: solvable Lie algebra; nilradical; derivation
@article{10_5817_AM2013_3_141,
author = {Shabanskaya, A. and Thompson, G.},
title = {Solvable extensions of a special class of nilpotent {Lie} algebras},
journal = {Archivum mathematicum},
pages = {141--159},
year = {2013},
volume = {49},
number = {3},
doi = {10.5817/AM2013-3-141},
mrnumber = {3144179},
zbl = {06321155},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-3-141/}
}
TY - JOUR AU - Shabanskaya, A. AU - Thompson, G. TI - Solvable extensions of a special class of nilpotent Lie algebras JO - Archivum mathematicum PY - 2013 SP - 141 EP - 159 VL - 49 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-3-141/ DO - 10.5817/AM2013-3-141 LA - en ID - 10_5817_AM2013_3_141 ER -
Shabanskaya, A.; Thompson, G. Solvable extensions of a special class of nilpotent Lie algebras. Archivum mathematicum, Tome 49 (2013) no. 3, pp. 141-159. doi: 10.5817/AM2013-3-141
[1] Ancochea, J. M., Campoamor–Stursberg, R., Garcia Vergnolle, L.: Solvable Lie algebras with naturally graded nilradicals and their invariants. J. Phys. A 39 (6) (2006), 1339–1355. | DOI | MR | Zbl
[2] Ancochea, J. M., Campoamor–Stursberg, R., Garcia Vergnolle, L.: Classification of Lie algebras with naturally graded quasi–filiform nilradicals. J. Geom. Phys. 61 (11) (2011), 2168–2186. | DOI | MR | Zbl
[3] Campoamor–Stursberg, R.: Solvable Lie algebras with an $\mathbb{N}$–graded nilradical of maximal nilpotency degree and their invariants. J. Phys. A 43 (14) (2010), 18pp., 145202. | DOI | MR
[4] Cartan, E.: Sur la structure des groupes de transformations finis et continus. Paris: These, Nony, 1894; 2nd ed. Vuibert, 1933. | Zbl
[5] Gantmacher, F.: On the classification of real simple Lie groups. Mat. Sb. (1950), 103–112.
[6] Gong, M.–P.: Classification of nilpotent Lie algebras of dimension $7$. Ph.D. thesis, University of Waterloo, 1998.
[7] Hindeleh, F., Thompson, G.: Seven dimensional Lie algebras with a four-dimensional nilradical. Algebras Groups Geom. 25 (3) (2008), 243–265. | MR | Zbl
[8] Humphreys, J.: Lie algebras and their representations. Springer, 1997.
[9] Jacobson, N.: Lie algebras. Interscience Publishers, 1962. | MR | Zbl
[10] Morozov, V. V.: Classification of nilpotent Lie algebras in dimension six. Izv. Vyssh. Uchebn. Zaved. Mat. 4 (5) (1958), 161–171. | MR
[11] Mubarakzyanov, G. M.: Classification of real Lie algebras in dimension five. Izv. Vyssh. Uchebn. Zaved. Mat. 3 (34) (1963), 99–106. | MR
[12] Mubarakzyanov, G. M.: Classification of solvable Lie algebras in dimension six with one non-nilpotent basis element. Izv. Vyssh. Uchebn. Zaved. Mat. 4 (35) (1963), 104–116. | MR
[13] Mubarakzyanov, G. M.: On solvable Lie algebras. Izv. Vyssh. Uchebn. Zaved. Mat. 1 (32) (1963), 114–123. | MR | Zbl
[14] Ndogmo, J. C., Winternitz, P.: Solvable Lie algebras with abelian nilradicals. J. Phys. A 27 (2) (1994), 405–423. | DOI | MR | Zbl
[15] Patera, J., Sharp, R. T., Winternitz, P., Zassenhaus, H.: Invariants of real low dimension Lie algebras. J. Math. Phys. 17 (1976), 986–994. | DOI | MR | Zbl
[16] Rubin, J. L., Winternitz, P.: Solvable Lie algebras with Heisenberg ideals. J. Phys. A 26 (1993), 1123–1138. | DOI | MR | Zbl
[17] Seeley, C.: $7$–dimensional nilpotent Lie algebra. Trans. Amer. Math. Soc. 335 (2) (1993), 479–496. | MR
[18] Shabanskaya, A.: Classification of six dimensional solvable indecomposable Lie algebras with a codimension one nilradical over $\mathbb{R}$. Ph.D. thesis, University of Toledo, 2011. | MR
[19] Shabanskaya, A., Thompson, G.: Six–dimensional Lie algebras with a five–dimensional nilradical. J. Lie Theory 23 (2) (2013), 313–355. | MR | Zbl
[20] Skjelbred, T., Sund, T.: Classification of nilpotent Lie algebras in dimension six. University of Oslo, 1977, preprint.
[21] Snobl, L.: On the structure of maximal solvable extensions and of Levi extensions of nilpotent Lie algebras. J. Phys. A 43 (50) (2010), 17pp. | DOI | MR | Zbl
[22] Snobl, L.: Maximal solvable extensions of filiform algebras. Arch. Math. (Brno 47 (5) (2011), 405–414. | MR | Zbl
[23] Snobl, L., Karasek, D.: Classification of solvable Lie algebras with a given nilradical by means of solvable extensions of its subalgebras. Linear Algebra Appl. 432 (7) (2010), 18/36–1850. | DOI | MR | Zbl
[24] Snobl, L., Winternitz, P.: A class of solvable Lie algebras and their Casimir invariants. J. Phys. A 38 (12) (2005), 2687–2700. | DOI | MR | Zbl
[25] Snobl, L., Winternitz, P.: All solvable extensions of a class of nilpotent Lie algebras of dimension $n$ and degree of nilpotency $n-1$. J. Phys. A 2009 (2009), 16pp., 105201. | MR | Zbl
[26] Tremblay, S., Winternitz, P.: Solvable Lie algebras with triangular nilradicals. J. Phys. A. 31 (2) (1998), 789–806. | DOI | MR | Zbl
[27] Turkowski, P.: Solvable Lie algebras of dimension six. J. Math. Phys. 31 (6) (1990), 1344–1350. | DOI | MR | Zbl
[28] Umlauf, K. A.: Über die Zusammensetzung der endlichen continuierliche Transformationgruppen insbesondere der Gruppen von Rang null. Ph.D. thesis, University of Leipzig, 1891.
[29] Vergne, M.: Cohomologie des algèbres de Lie nilpotentes. Application a l’étude de la variété des algebres de Lie nilpotentes. Bull. Math. Soc. France 78 (1970), 81–116. | MR | Zbl
[30] Wang, Y., Lin, J., Deng, S.: Solvable Lie algebras with quasifiliform nilradicals. Comm. Algebra 36 (11) (2008), 4052–4067. | DOI | MR | Zbl
Cité par Sources :