Tangent lifts of higher order of multiplicative Dirac structures
Archivum mathematicum, Tome 49 (2013) no. 2, pp. 87-104 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The tangent lifts of higher order of Dirac structures and some properties have been defined in [9] and studied in [11]. By the same way, the tangent lifts of higher order of Poisson structures have been studied in [10] and some applications are given. In particular, the authors have studied the nature of the Lie algebroids and singular foliations induced by these lifting. In this paper, we study the tangent lifts of higher order of multiplicative Poisson structures, multiplicative Dirac structures and we describe the Lie bialgebroid structures and the algebroid-Dirac structures induced by these prolongations.
The tangent lifts of higher order of Dirac structures and some properties have been defined in [9] and studied in [11]. By the same way, the tangent lifts of higher order of Poisson structures have been studied in [10] and some applications are given. In particular, the authors have studied the nature of the Lie algebroids and singular foliations induced by these lifting. In this paper, we study the tangent lifts of higher order of multiplicative Poisson structures, multiplicative Dirac structures and we describe the Lie bialgebroid structures and the algebroid-Dirac structures induced by these prolongations.
DOI : 10.5817/AM2013-2-87
Classification : 53C15, 53C75, 53D05, 53D17, 58H05
Keywords: Lie groupoids; Lie bialgebroids; multiplicative Dirac structures; tangent functor of higher order; natural transformations
@article{10_5817_AM2013_2_87,
     author = {Wamba, P.~M.~Kouotchop and Ntyam, A.},
     title = {Tangent lifts of higher order of multiplicative {Dirac} structures},
     journal = {Archivum mathematicum},
     pages = {87--104},
     year = {2013},
     volume = {49},
     number = {2},
     doi = {10.5817/AM2013-2-87},
     mrnumber = {3118866},
     zbl = {06321151},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-2-87/}
}
TY  - JOUR
AU  - Wamba, P. M. Kouotchop
AU  - Ntyam, A.
TI  - Tangent lifts of higher order of multiplicative Dirac structures
JO  - Archivum mathematicum
PY  - 2013
SP  - 87
EP  - 104
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-2-87/
DO  - 10.5817/AM2013-2-87
LA  - en
ID  - 10_5817_AM2013_2_87
ER  - 
%0 Journal Article
%A Wamba, P. M. Kouotchop
%A Ntyam, A.
%T Tangent lifts of higher order of multiplicative Dirac structures
%J Archivum mathematicum
%D 2013
%P 87-104
%V 49
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2013-2-87/
%R 10.5817/AM2013-2-87
%G en
%F 10_5817_AM2013_2_87
Wamba, P. M. Kouotchop; Ntyam, A. Tangent lifts of higher order of multiplicative Dirac structures. Archivum mathematicum, Tome 49 (2013) no. 2, pp. 87-104. doi: 10.5817/AM2013-2-87

[1] Cantrijn, F., Crampin, M., Sarlet, W., Saunders, D.: The canonical isomorphism between $T^{k}T^{\ast }$ and $T^{\ast }T^{k}$. C.R. Acad. Sci. Paris 309 (1989), 1509–1514. | MR

[2] Courant, J.: Dirac manifols. Trans. Amer. Math. Soc. 319 (2) (1990), 631–661. | DOI | MR

[3] Courant, T.: Tangent Dirac structures. J. Phys. A; Math. Gen. 23 (1990), 5153–5168, printed in theUK. | DOI | MR | Zbl

[4] Courant, T.: Tangent Lie algebroids. J. Phys. A; Math. Gen. 23 (1994), 4527–4536, printed in the UK. | MR | Zbl

[5] Gancarzewicz, J., Mikulski, W., Pogoda, Z.: Lifts of some tensor fields and connections to product preserving functors. Nagoya Math. J. 135 (1994), 1–41. | MR | Zbl

[6] Grabowski, J., Urbanski, P.: Tangent lifts of Poisson and related structures. J.Phys. A: Math. Gen. 28 (1995), 6743–6777. | DOI | MR | Zbl

[7] Kolář, I.: Functorial prolongations of Lie algebroids. Proceedings Conf. Prague 2004, Charles University, Prague, 2005. | MR | Zbl

[8] Kolář, I., Michor, P., Slovák, J.: Natural Operations in Differential Geometry. Springer–Verlag, 1993. | MR

[9] Kouotchop Wamba, P. M., Ntyam, A., Wouafo Kamga, J.: Tangent Dirac structures of higher order. Arch. Math. (Brno) 47 (2011), 17–22. | MR | Zbl

[10] Kouotchop Wamba, P. M., Ntyam, A., Wouafo Kamga, J.: Tangent lifts of higher order of multivector fields and applications. J. Math. Sci. Adv. Appl. 15 (2) (2012), 89–112. | MR

[11] Kouotchop Wamba, P.M., Ntyam, A., Wouafo Kamga, J.: Some properties of tangent Dirac structures of higher order. Arch. Math. (Brno) 48 (3) (2012), 233–241. | DOI | MR | Zbl

[12] Mackenzie, K., Xu, P.: Lie bialgebroids and Poisson groupoids. Duke Math. J. 73 (2) (1998), 415–452. | DOI | MR

[13] Mackenzie, K. C. H.: General theory of Lie groupoids and Lie algebroids. London Math. Soc. Lecture Note Ser. 213, Cambridge Univ. Press, Cambridge, 2005. | MR | Zbl

[14] Morimoto, A.: Lifting of some type of tensors fields and connections to tangent bundles of $p^{r}$–velocities. Nagoya Math. J. 40 (1970), 13–31. | MR

[15] Ntyam, A., Mba, A.: On natural vector bundle morphisms $T^{A}\circ \bigotimes _{s}^{q}\rightarrow \bigotimes _{s}^{q}\circ T^{A}$ over $id_{T^{A}}$. Ann. Polon. Math. 96 (3) (2009), 295–301. | MR

[16] Ntyam, A., Wouafo Kamga, J.: New versions of curvatures and torsion formulas of complete lifting of a linear connection to Weil bundles. Ann. Polon. Math. 82 (3) (2003), 233–240. | DOI | MR

[17] Ortiz, C.: B-Fiel transformations of Poisson groupoids. arXiv: 1107.3343v3 [math. SG], 31 Aug 2011. | MR

[18] Ortiz, C.: Multiplicative Dirac structures on Lie groups. C.R. Acad. Sci. Paris Ser. I 346 (23–24) (2008), 1279–1282. | DOI | MR | Zbl

[19] Vaisman, I.: Lectures on the geometry of Poisson manifolds. vol. 118, Progress in Mathematics, 1994. | MR | Zbl

[20] Vaisman, I., Mitric, G.: Poisson structures on tangent bundles. Differential Geom. Appl. 18 (2003), 200–228. | MR | Zbl

[21] Wouafo Kamga, J.: Global prolongation of geometric objects to some jet spaces. International Centre for Theoretical Physics, Trieste, Italy, 1997.

Cité par Sources :