On unitary convex decompositions of vectors in a $JB^{*}$-algebra
Archivum mathematicum, Tome 49 (2013) no. 2, pp. 79-86 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

By exploiting his recent results, the author further investigates the extent to which variation in the coefficients of a unitary convex decomposition of a vector in a unital $JB^{*}$-algebra permits the vector decomposable as convex combination of fewer unitaries; certain $ C^{*}$-algebra results due to M. Rørdam have been extended to the general setting of $JB^{*}$-algebras.
By exploiting his recent results, the author further investigates the extent to which variation in the coefficients of a unitary convex decomposition of a vector in a unital $JB^{*}$-algebra permits the vector decomposable as convex combination of fewer unitaries; certain $ C^{*}$-algebra results due to M. Rørdam have been extended to the general setting of $JB^{*}$-algebras.
DOI : 10.5817/AM2013-2-79
Classification : 17C65, 46H70, 46L70
Keywords: $C^{*}$-algebra; $JB^{*}$-algebra; unit ball; invertible element; unitary element; unitary isotope; convex hull; unitary rank; unitary convex decomposition
@article{10_5817_AM2013_2_79,
     author = {Siddiqui, Akhlaq A.},
     title = {On unitary convex decompositions of vectors in a $JB^{*}$-algebra},
     journal = {Archivum mathematicum},
     pages = {79--86},
     year = {2013},
     volume = {49},
     number = {2},
     doi = {10.5817/AM2013-2-79},
     mrnumber = {3118865},
     zbl = {06321150},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-2-79/}
}
TY  - JOUR
AU  - Siddiqui, Akhlaq A.
TI  - On unitary convex decompositions of vectors in a $JB^{*}$-algebra
JO  - Archivum mathematicum
PY  - 2013
SP  - 79
EP  - 86
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-2-79/
DO  - 10.5817/AM2013-2-79
LA  - en
ID  - 10_5817_AM2013_2_79
ER  - 
%0 Journal Article
%A Siddiqui, Akhlaq A.
%T On unitary convex decompositions of vectors in a $JB^{*}$-algebra
%J Archivum mathematicum
%D 2013
%P 79-86
%V 49
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2013-2-79/
%R 10.5817/AM2013-2-79
%G en
%F 10_5817_AM2013_2_79
Siddiqui, Akhlaq A. On unitary convex decompositions of vectors in a $JB^{*}$-algebra. Archivum mathematicum, Tome 49 (2013) no. 2, pp. 79-86. doi: 10.5817/AM2013-2-79

[1] Braun, R., Kaup, W., Upmeier, H.: A holomorphic characterization of Jordan $C^{*}$–algebras. Math. Z. 161 (1978), 277–290. | DOI | MR | Zbl

[2] Jacobson, N.: Structure and representations of Jordan algebras. AMS Providence, Rhode Island, 1968. | MR | Zbl

[3] Kadison, R. V., Pedersen, G. K.: Means and convex combinations of unitary operators. Math. Scand. 57 (1985), 249–266. | MR | Zbl

[4] Rørdam, M.: The theory of unitary rank and regular approximation. Ph.D. thesis, University of Pennsylvania, 1987.

[5] Rørdam, M.: Advances in the theory of unitary rank and regular approximations. Ann. of Math. (2) 128 (1988), 153–172. | MR

[6] Siddiqui, A. A.: Computation of the $\lambda _{u}$–function in $JB^{*}$–algebras. submitted.

[7] Siddiqui, A. A.: Asymmetric decompositions of vectors in $JB^{*}$–algebras. Arch. Math. (Brno) 42 (2006), 159–166. | MR | Zbl

[8] Siddiqui, A. A.: On unitaries in $JB^{*}$–algebras. Indian J. Math. 48 (1) (2006), 35–48. | MR | Zbl

[9] Siddiqui, A. A.: Self–adjointness in unitary isotopes of $JB^{*}$–algebras. Arch. Math. 87 (2006), 350–358. | DOI | MR | Zbl

[10] Siddiqui, A. A.: Average of two extreme points in $JBW^{*}$–triples. Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), 176–178. | DOI | MR | Zbl

[11] Siddiqui, A. A.: $JB^{*}$–algebras of topological stable rank $1$. Int. J. Math. Math. Sci. 2007 (2007), 24. | DOI | MR

[12] Siddiqui, A. A.: A proof of the Russo–Dye theorem for $JB^{*}$–algebras. New York J. Math. 16 (2010), 53–60. | MR | Zbl

[13] Siddiqui, A. A.: Convex combinations of unitaries in $JB^{*}$–algebras. New York J. Math. 17 (2011), 127–137. | MR | Zbl

[14] Siddiqui, A. A.: The $\lambda _{u}$–function in $JB^{*}$–algebras. New York J. Math. 17 (2011), 139–147. | MR | Zbl

[15] Wright, J. D. M.: Jordan $C^{*}$–algebras. Michigan Math. J. 24 (1977), 291–302. | MR | Zbl

[16] Youngson, M. A.: A Vidav theorem for Banach Jordan algebras. Math. Proc. Cambridge Philos. Soc. 84 (1978), 263–272. | DOI | MR | Zbl

Cité par Sources :