Keywords: $C^{*}$-algebra; $JB^{*}$-algebra; unit ball; invertible element; unitary element; unitary isotope; convex hull; unitary rank; unitary convex decomposition
@article{10_5817_AM2013_2_79,
author = {Siddiqui, Akhlaq A.},
title = {On unitary convex decompositions of vectors in a $JB^{*}$-algebra},
journal = {Archivum mathematicum},
pages = {79--86},
year = {2013},
volume = {49},
number = {2},
doi = {10.5817/AM2013-2-79},
mrnumber = {3118865},
zbl = {06321150},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-2-79/}
}
Siddiqui, Akhlaq A. On unitary convex decompositions of vectors in a $JB^{*}$-algebra. Archivum mathematicum, Tome 49 (2013) no. 2, pp. 79-86. doi: 10.5817/AM2013-2-79
[1] Braun, R., Kaup, W., Upmeier, H.: A holomorphic characterization of Jordan $C^{*}$–algebras. Math. Z. 161 (1978), 277–290. | DOI | MR | Zbl
[2] Jacobson, N.: Structure and representations of Jordan algebras. AMS Providence, Rhode Island, 1968. | MR | Zbl
[3] Kadison, R. V., Pedersen, G. K.: Means and convex combinations of unitary operators. Math. Scand. 57 (1985), 249–266. | MR | Zbl
[4] Rørdam, M.: The theory of unitary rank and regular approximation. Ph.D. thesis, University of Pennsylvania, 1987.
[5] Rørdam, M.: Advances in the theory of unitary rank and regular approximations. Ann. of Math. (2) 128 (1988), 153–172. | MR
[6] Siddiqui, A. A.: Computation of the $\lambda _{u}$–function in $JB^{*}$–algebras. submitted.
[7] Siddiqui, A. A.: Asymmetric decompositions of vectors in $JB^{*}$–algebras. Arch. Math. (Brno) 42 (2006), 159–166. | MR | Zbl
[8] Siddiqui, A. A.: On unitaries in $JB^{*}$–algebras. Indian J. Math. 48 (1) (2006), 35–48. | MR | Zbl
[9] Siddiqui, A. A.: Self–adjointness in unitary isotopes of $JB^{*}$–algebras. Arch. Math. 87 (2006), 350–358. | DOI | MR | Zbl
[10] Siddiqui, A. A.: Average of two extreme points in $JBW^{*}$–triples. Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), 176–178. | DOI | MR | Zbl
[11] Siddiqui, A. A.: $JB^{*}$–algebras of topological stable rank $1$. Int. J. Math. Math. Sci. 2007 (2007), 24. | DOI | MR
[12] Siddiqui, A. A.: A proof of the Russo–Dye theorem for $JB^{*}$–algebras. New York J. Math. 16 (2010), 53–60. | MR | Zbl
[13] Siddiqui, A. A.: Convex combinations of unitaries in $JB^{*}$–algebras. New York J. Math. 17 (2011), 127–137. | MR | Zbl
[14] Siddiqui, A. A.: The $\lambda _{u}$–function in $JB^{*}$–algebras. New York J. Math. 17 (2011), 139–147. | MR | Zbl
[15] Wright, J. D. M.: Jordan $C^{*}$–algebras. Michigan Math. J. 24 (1977), 291–302. | MR | Zbl
[16] Youngson, M. A.: A Vidav theorem for Banach Jordan algebras. Math. Proc. Cambridge Philos. Soc. 84 (1978), 263–272. | DOI | MR | Zbl
Cité par Sources :