Stabilities of F-Yang-Mills fields on submanifolds
Archivum mathematicum, Tome 49 (2013) no. 2, pp. 125-139 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we define an $F$-Yang-Mills functional, and hence $F$-Yang-Mills fields. The first and the second variational formulas are calculated, and the stabilities of $F$-Yang-Mills fields on some submanifolds of the Euclidean spaces and the spheres are investigated, and hence the theories of Yang-Mills fields are generalized in this paper.
In this paper, we define an $F$-Yang-Mills functional, and hence $F$-Yang-Mills fields. The first and the second variational formulas are calculated, and the stabilities of $F$-Yang-Mills fields on some submanifolds of the Euclidean spaces and the spheres are investigated, and hence the theories of Yang-Mills fields are generalized in this paper.
DOI : 10.5817/AM2013-2-125
Classification : 58E20
Keywords: $F$-Yang-Mills field; stability
@article{10_5817_AM2013_2_125,
     author = {Jia, Gao-Yang and Zhou, Zhen-Rong},
     title = {Stabilities of {F-Yang-Mills} fields on submanifolds},
     journal = {Archivum mathematicum},
     pages = {125--139},
     year = {2013},
     volume = {49},
     number = {2},
     doi = {10.5817/AM2013-2-125},
     mrnumber = {3118869},
     zbl = {06321154},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-2-125/}
}
TY  - JOUR
AU  - Jia, Gao-Yang
AU  - Zhou, Zhen-Rong
TI  - Stabilities of F-Yang-Mills fields on submanifolds
JO  - Archivum mathematicum
PY  - 2013
SP  - 125
EP  - 139
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-2-125/
DO  - 10.5817/AM2013-2-125
LA  - en
ID  - 10_5817_AM2013_2_125
ER  - 
%0 Journal Article
%A Jia, Gao-Yang
%A Zhou, Zhen-Rong
%T Stabilities of F-Yang-Mills fields on submanifolds
%J Archivum mathematicum
%D 2013
%P 125-139
%V 49
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2013-2-125/
%R 10.5817/AM2013-2-125
%G en
%F 10_5817_AM2013_2_125
Jia, Gao-Yang; Zhou, Zhen-Rong. Stabilities of F-Yang-Mills fields on submanifolds. Archivum mathematicum, Tome 49 (2013) no. 2, pp. 125-139. doi: 10.5817/AM2013-2-125

[1] Bourguignon, J.—P., Lawson, H. B.: Stability and isolation phenomena for Yang–Mills fields. Comm. Math. Phys. 79 (2) (1981), 189–230. | DOI | MR | Zbl

[2] Bourguignon, J.–P., Lawson, H. B., Simons, J.: Stability and gap phenomena for Yang-Mills fields. Proc. Acad. Sci. U.S.A. 76 (1979), 1550–1553. | DOI | MR | Zbl

[3] Chen, Q., Zhou, Z.–R.: On gap properties and instabilities of p-Yang-Mills fields. Canad. J. Math. 59 (6) (2007), 1245–1259. | DOI | MR | Zbl

[4] Sibner, L. M., Sibner, R. J., Uhlenbeck, K.: [Solutions to Yang–Mills equations that are not self–dual]. Proc. Natl. Acad. Sci. USA 86 (1989), 8610–8613. | DOI | MR | Zbl

[5] Xin, Y. L.: Instability theorems of Yang-Mills fields. Acta Math. Sci. 3 (1) (1983), 103–112. | MR | Zbl

Cité par Sources :