CLO spaces and central maximal operators
Archivum mathematicum, Tome 49 (2013) no. 2, pp. 119-124 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider central versions of the space $\operatorname{BLO}$ studied by Coifman and Rochberg and later by Bennett, as well as some natural relations with a central version of a maximal operator.
We consider central versions of the space $\operatorname{BLO}$ studied by Coifman and Rochberg and later by Bennett, as well as some natural relations with a central version of a maximal operator.
DOI : 10.5817/AM2013-2-119
Classification : 42B25, 42B35
Keywords: central mean oscillation; central maximal function
@article{10_5817_AM2013_2_119,
     author = {Guzm\'an-Partida, Martha},
     title = {CLO spaces and central maximal operators},
     journal = {Archivum mathematicum},
     pages = {119--124},
     year = {2013},
     volume = {49},
     number = {2},
     doi = {10.5817/AM2013-2-119},
     mrnumber = {3118868},
     zbl = {06321153},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-2-119/}
}
TY  - JOUR
AU  - Guzmán-Partida, Martha
TI  - CLO spaces and central maximal operators
JO  - Archivum mathematicum
PY  - 2013
SP  - 119
EP  - 124
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-2-119/
DO  - 10.5817/AM2013-2-119
LA  - en
ID  - 10_5817_AM2013_2_119
ER  - 
%0 Journal Article
%A Guzmán-Partida, Martha
%T CLO spaces and central maximal operators
%J Archivum mathematicum
%D 2013
%P 119-124
%V 49
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2013-2-119/
%R 10.5817/AM2013-2-119
%G en
%F 10_5817_AM2013_2_119
Guzmán-Partida, Martha. CLO spaces and central maximal operators. Archivum mathematicum, Tome 49 (2013) no. 2, pp. 119-124. doi: 10.5817/AM2013-2-119

[1] Alvarez, J.: The distribution function in the Morrey space. Proc. Amer. Math. Soc. 83 (1981), 693–699. | DOI | MR | Zbl

[2] Alvarez, J., Guzmán–Partida, M., Lakey, J.: Spaces of bounded $\lambda $–central mean oscillation, Morrey spaces, and $\lambda $–central Carleson measures. Collect. Math. 51 (2000), 1–47. | MR | Zbl

[3] Bennett, C.: Another characterization of BLO. Proc. Amer. Math. Soc. 85 (1982), 552–556. | DOI | MR | Zbl

[4] Chen, Y. Z., Lau, K. S.: On some new classes of Hardy spaces. J. Funct. Anal. 84 (1989), 255–278. | DOI | MR

[5] Coifman, R. R., Rochberg, R.: Another characterization of BMO. Proc. Amer. Math. Soc. 79 (1980), 249–254. | DOI | MR | Zbl

[6] García–Cuerva, J.: Hardy spaces and Beurling algebras. J. London Math. Soc. 39 (1989), 499–513. | DOI | MR | Zbl

[7] Lin, H., Nakai, E., Yang, D.: Boundedness of Lusin–area and $g_{\lambda }^{\ast }$ functions on localized BMO spaces over doubling metric measure spaces. Bull. Sci. Math. 135 (2011), 59–88. | DOI | MR

[8] Lin, H., Yang, D.: Spaces of type BLO on non–homogeneous metric measure spaces. Front. Math. China 6 (2011), 271–292. | DOI | MR

[9] Liu, L., Yang, D.: $BLO$ spaces associated with the Ornstein–Uhlenbeck operator. Bull. Sci. Math. 132 (2008), 633–649. | DOI | MR | Zbl

[10] Lu, S., Yang, D.: The central BMO spaces and Littlewood–Paley operators. J. Approx. Theory Appl. 11 (1995), 72–94. | MR | Zbl

[11] Lu, S., Yang, D., Hu, G.: Herz Type Spaces and Their Applications. Science Press, Beijing, 2008.

[12] Yang, Da., Yang, Do., Hu, G.: The Hardy Space $H^{1}$ with Non–doubling Measures and Their Applications. Lecture Notes in Math., vol. 2084, Springer–Verlag, Berlin, 2013. | MR

Cité par Sources :