Variational method and conjugacy criteria for half-linear differential equations
Archivum mathematicum, Tome 49 (2013) no. 1, pp. 9-16 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We establish new conjugacy criteria for half-linear second order differential equations. These criteria are based on the relationship between conjugacy of the investigated equation and nonpositivity of the associated energy functional.
We establish new conjugacy criteria for half-linear second order differential equations. These criteria are based on the relationship between conjugacy of the investigated equation and nonpositivity of the associated energy functional.
DOI : 10.5817/AM2013-1-9
Classification : 34A34, 34C10
Keywords: half-linear differential equation; conjugacy criteria; variational principle; energy functional; half-linear trigonometric functions
@article{10_5817_AM2013_1_9,
     author = {Chv\'atal, Martin and Do\v{s}l\'y, Ond\v{r}ej},
     title = {Variational method and conjugacy criteria for half-linear differential equations},
     journal = {Archivum mathematicum},
     pages = {9--16},
     year = {2013},
     volume = {49},
     number = {1},
     doi = {10.5817/AM2013-1-9},
     mrnumber = {3073011},
     zbl = {06321143},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-9/}
}
TY  - JOUR
AU  - Chvátal, Martin
AU  - Došlý, Ondřej
TI  - Variational method and conjugacy criteria for half-linear differential equations
JO  - Archivum mathematicum
PY  - 2013
SP  - 9
EP  - 16
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-9/
DO  - 10.5817/AM2013-1-9
LA  - en
ID  - 10_5817_AM2013_1_9
ER  - 
%0 Journal Article
%A Chvátal, Martin
%A Došlý, Ondřej
%T Variational method and conjugacy criteria for half-linear differential equations
%J Archivum mathematicum
%D 2013
%P 9-16
%V 49
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-9/
%R 10.5817/AM2013-1-9
%G en
%F 10_5817_AM2013_1_9
Chvátal, Martin; Došlý, Ondřej. Variational method and conjugacy criteria for half-linear differential equations. Archivum mathematicum, Tome 49 (2013) no. 1, pp. 9-16. doi: 10.5817/AM2013-1-9

[1] Abd–Alla, M. Z., Abu–Risha, M. H.: Conjugacy criteria for the half–linear second order differential equation. Rocky Mountain J. Math. 38 (2008), 359–372. | DOI | MR | Zbl

[2] Chantladze, T., Kandelaki, N., Lomtatidze, A.: On zeros of solutions of a second order singular half-linear equation. Mem. Differential Equations Math. Phys. 17 (1999), 127–154. | MR

[3] Chantladze, T., Lomtatidze, A., Ugulava, D.: Conjugacy and disconjugacy criteria for second order linear ordinary differential equations. Arch. Math. (Brno) 36 (2000), 313–323. | MR | Zbl

[4] Došlý, O.: Conjugacy criteria for second order differential equations. Rocky Mountain. J. Math. 23 (1993), 849–861. | DOI | MR

[5] Došlý, O.: A remark on conjugacy of half–linear second order differential equations. Math. Slovaca 50 (2000), 67–79. | MR | Zbl

[6] Došlý, O., Elbert, Á.: Conjugacy of half–linear second order differential equations. Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), 517–525. | MR | Zbl

[7] Došlý, O., Řehák, P.: Half-Linear Differential Equations. North-Holland Mathematics Studies, vol. 202, Elsevier Science B.V., Amsterdam, 2005. | MR | Zbl

[8] Elbert, Á.: A half–linear second order differential equation. Colloq. Math. Soc. János Bolyai 30 (1979), 158–180.

[9] Kumari, Sowjanaya I., Umamaheswaram, S.: Oscillation criteria for linear matrix Hamiltonian systems. J. Differential Equations 165 (2000), 174–198. | DOI | MR

[10] Lomtatidze, A.: Existence of conjugate points for second-order linear differential equations. Georgian Math. J. 2 (1995), 93–98. | DOI | MR | Zbl

[11] Mařík, R.: A remark on connection between conjugacy of half-linear differential equation and equation with mixed nonlinearities. Appl. Math. Lett. 24 (2011), 93–96. | DOI | MR | Zbl

[12] Müller–Pfeiff, E., Schott, Th.: On the existence of conjugate points for Sturm–Liouville differential equations. Z. Anal. Anwendungen 9 (1990), 155–164. | MR

[13] Müller–Pfeiffer, E.: Existence of conjugate points for second and fourth order differential equations. Proc. Roy. Soc. Edinburgh Sect. A 89 (1981), 281–291. | MR | Zbl

[14] Müller–Pfeiffer, E.: On the existence of conjugate points for Sturm–Liouville equations on noncompact intervals. Math. Nachr. 152 (1991), 49–57. | DOI | MR

[15] Peña, S.: Conjugacy criteria for half–linear differential equations. Arch. Math. (Brno) 35 (1999), 1–11. | MR | Zbl

[16] Tipler, F. J.: General relativity and conjugate ordinary differential equations. J. Differential Equations 30 (1978), 165–174. | DOI | MR | Zbl

Cité par Sources :