Keywords: comparison theorem; Finsler geometry; distance function; first eigenvalue
@article{10_5817_AM2013_1_65,
author = {Zhu, Yecheng and Hu, Wenming},
title = {Some generalized comparison results in {Finsler} geometry and their applications},
journal = {Archivum mathematicum},
pages = {65--78},
year = {2013},
volume = {49},
number = {1},
doi = {10.5817/AM2013-1-65},
mrnumber = {3073017},
zbl = {06321149},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-65/}
}
TY - JOUR AU - Zhu, Yecheng AU - Hu, Wenming TI - Some generalized comparison results in Finsler geometry and their applications JO - Archivum mathematicum PY - 2013 SP - 65 EP - 78 VL - 49 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-65/ DO - 10.5817/AM2013-1-65 LA - en ID - 10_5817_AM2013_1_65 ER -
Zhu, Yecheng; Hu, Wenming. Some generalized comparison results in Finsler geometry and their applications. Archivum mathematicum, Tome 49 (2013) no. 1, pp. 65-78. doi: 10.5817/AM2013-1-65
[1] Astola, L., Jalba, A., Balmashnova, E., Florack, L.: Finsler streamline tracking with single tensor orientation distribution function for high angular resolution diffusion imaging. J. Math. Imaging Vision 41 (2011), 170–181. | DOI | MR | Zbl
[2] Bao, D., Chern, S. S., Shen, Z.: An Introduction to Riemann–Finsler Geometry. Springer, New York, 2000. | MR | Zbl
[3] Beil, R. G.: Finsler geometry and relativistic field theory. Found. Phys. 33 (2003), 1107–1127. | DOI | MR
[4] Busemann, H.: Intrinsic Area. Ann. Math. 48 (1947), 234–267. | MR
[5] Chen, Q., Xin, Y. L.: A generalized maximum principle and its applications in geometry. Amer. J. Math. 114 (1992), 335–366. | DOI | MR | Zbl
[6] Chen, X. Y., Shen, Z. M.: A comparison theorem on the Ricci curvature in projective geometry. Ann. Glob. Anal. Geom. 23 (2003), 14–155. | MR | Zbl
[7] Chern, S. S.: Local equivalence and Euclidean connections in Finsler space. Sci. Rep. Nat. Tsing Hua Univ. Ser. A 5 (1948), 95–121. | MR
[8] Kasue, A.: On a lower bound for the first eigenvalue of the Laplace operator on a Riemannian manifold. Ann. Sci. Ecole. Norm. Sup. 17 (1984), 31–44. | MR | Zbl
[9] Kim, C. W., Min, K.: Finsler metrics with positive constant flag curvature. Ann. Glob. Anal. Geom. 92 (2009), 70–79. | MR | Zbl
[10] Ohta, S.: Finsler interpolation inequalities. Calc. Var. Partial Differential Equations 36 (2009), 211–249. | DOI | MR | Zbl
[11] Ohta, S.: Uniform convexity and smoothness, and their applications in Finsler geometry. Math. Ann. 343 (2009), 669–699. | DOI | MR | Zbl
[12] Renesse, M.: Heat kernel comparison on Alexandrov spaces with curvature bounded below. Potential Anal. 21 (2004), 151–176. | DOI | MR | Zbl
[13] Shen, Z.: Volume comparision and its application in Riemann–Finsler geometry. Adv. Math. 128 (1997), 306–328. | DOI | MR
[14] Shen, Z.: The Non-linear Laplacian Finsler Manifolds. The Theory of Finslerian Laplacians and Applications (Antonelli, P. L., Lackey, B. C., eds.), Kluwer Acad. Publ., Dordrecht, 1998, pp. 187–198. | MR
[15] Shen, Z.: Lectures on Finsler Geometry. World Scientific, Singapare, 2001. | MR | Zbl
[16] Shen, Z.: Curvature, distance and volume in Finsler geometry. IHES 311 (2003), 549–576.
[17] Wu, B. Y.: Some rigidity theorems for locally symmetrical Finsler manifolds. J. Geom. Phys. 58 (2008), 923–930. | DOI | MR | Zbl
[18] Wu, B. Y., Xin, Y. L.: Comparision theorem in Finsler geometry and their applications. Math. Ann. 337 (2007), 177–196.
Cité par Sources :