Some generalized comparison results in Finsler geometry and their applications
Archivum mathematicum, Tome 49 (2013) no. 1, pp. 65-78 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we generalize the Hessian comparison theorems and Laplacian comparison theorems described in [16, 18], then give some applications under various curvature conditions.
In this paper, we generalize the Hessian comparison theorems and Laplacian comparison theorems described in [16, 18], then give some applications under various curvature conditions.
DOI : 10.5817/AM2013-1-65
Classification : 53B40, 53C60
Keywords: comparison theorem; Finsler geometry; distance function; first eigenvalue
@article{10_5817_AM2013_1_65,
     author = {Zhu, Yecheng and Hu, Wenming},
     title = {Some generalized comparison results in {Finsler} geometry and their applications},
     journal = {Archivum mathematicum},
     pages = {65--78},
     year = {2013},
     volume = {49},
     number = {1},
     doi = {10.5817/AM2013-1-65},
     mrnumber = {3073017},
     zbl = {06321149},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-65/}
}
TY  - JOUR
AU  - Zhu, Yecheng
AU  - Hu, Wenming
TI  - Some generalized comparison results in Finsler geometry and their applications
JO  - Archivum mathematicum
PY  - 2013
SP  - 65
EP  - 78
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-65/
DO  - 10.5817/AM2013-1-65
LA  - en
ID  - 10_5817_AM2013_1_65
ER  - 
%0 Journal Article
%A Zhu, Yecheng
%A Hu, Wenming
%T Some generalized comparison results in Finsler geometry and their applications
%J Archivum mathematicum
%D 2013
%P 65-78
%V 49
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-65/
%R 10.5817/AM2013-1-65
%G en
%F 10_5817_AM2013_1_65
Zhu, Yecheng; Hu, Wenming. Some generalized comparison results in Finsler geometry and their applications. Archivum mathematicum, Tome 49 (2013) no. 1, pp. 65-78. doi: 10.5817/AM2013-1-65

[1] Astola, L., Jalba, A., Balmashnova, E., Florack, L.: Finsler streamline tracking with single tensor orientation distribution function for high angular resolution diffusion imaging. J. Math. Imaging Vision 41 (2011), 170–181. | DOI | MR | Zbl

[2] Bao, D., Chern, S. S., Shen, Z.: An Introduction to Riemann–Finsler Geometry. Springer, New York, 2000. | MR | Zbl

[3] Beil, R. G.: Finsler geometry and relativistic field theory. Found. Phys. 33 (2003), 1107–1127. | DOI | MR

[4] Busemann, H.: Intrinsic Area. Ann. Math. 48 (1947), 234–267. | MR

[5] Chen, Q., Xin, Y. L.: A generalized maximum principle and its applications in geometry. Amer. J. Math. 114 (1992), 335–366. | DOI | MR | Zbl

[6] Chen, X. Y., Shen, Z. M.: A comparison theorem on the Ricci curvature in projective geometry. Ann. Glob. Anal. Geom. 23 (2003), 14–155. | MR | Zbl

[7] Chern, S. S.: Local equivalence and Euclidean connections in Finsler space. Sci. Rep. Nat. Tsing Hua Univ. Ser. A 5 (1948), 95–121. | MR

[8] Kasue, A.: On a lower bound for the first eigenvalue of the Laplace operator on a Riemannian manifold. Ann. Sci. Ecole. Norm. Sup. 17 (1984), 31–44. | MR | Zbl

[9] Kim, C. W., Min, K.: Finsler metrics with positive constant flag curvature. Ann. Glob. Anal. Geom. 92 (2009), 70–79. | MR | Zbl

[10] Ohta, S.: Finsler interpolation inequalities. Calc. Var. Partial Differential Equations 36 (2009), 211–249. | DOI | MR | Zbl

[11] Ohta, S.: Uniform convexity and smoothness, and their applications in Finsler geometry. Math. Ann. 343 (2009), 669–699. | DOI | MR | Zbl

[12] Renesse, M.: Heat kernel comparison on Alexandrov spaces with curvature bounded below. Potential Anal. 21 (2004), 151–176. | DOI | MR | Zbl

[13] Shen, Z.: Volume comparision and its application in Riemann–Finsler geometry. Adv. Math. 128 (1997), 306–328. | DOI | MR

[14] Shen, Z.: The Non-linear Laplacian Finsler Manifolds. The Theory of Finslerian Laplacians and Applications (Antonelli, P. L., Lackey, B. C., eds.), Kluwer Acad. Publ., Dordrecht, 1998, pp. 187–198. | MR

[15] Shen, Z.: Lectures on Finsler Geometry. World Scientific, Singapare, 2001. | MR | Zbl

[16] Shen, Z.: Curvature, distance and volume in Finsler geometry. IHES 311 (2003), 549–576.

[17] Wu, B. Y.: Some rigidity theorems for locally symmetrical Finsler manifolds. J. Geom. Phys. 58 (2008), 923–930. | DOI | MR | Zbl

[18] Wu, B. Y., Xin, Y. L.: Comparision theorem in Finsler geometry and their applications. Math. Ann. 337 (2007), 177–196.

Cité par Sources :