On the Hammerstein equation in the space of functions of bounded $\varphi $-variation in the plane
Archivum mathematicum, Tome 49 (2013) no. 1, pp. 51-64
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study existence and uniqueness of solutions for the Hammerstein equation \[ u(x) = v(x) + \lambda \int _{I_{a}^{b}} K(x,y) f\big (y,u(y)\big )\, dy\,, \quad x \in I_{a}^{b} := [a_{1},b_{1}] \times [a_{2},b_{2}]\,, \] in the space $BV_{\varphi }^{\mathbb{R}}(I_{a}^{b})$ of function of bounded total $\varphi -$variation in the sense of Riesz, where $ \lambda \in \mathbb{R} $, $ K \colon I_{a}^{b} \times I_{a}^{b} \rightarrow \mathbb{R} $ and $ f\colon I_{a}^{b} \times \mathbb{R} \rightarrow \mathbb{R}$ are suitable functions.
In this paper we study existence and uniqueness of solutions for the Hammerstein equation \[ u(x) = v(x) + \lambda \int _{I_{a}^{b}} K(x,y) f\big (y,u(y)\big )\, dy\,, \quad x \in I_{a}^{b} := [a_{1},b_{1}] \times [a_{2},b_{2}]\,, \] in the space $BV_{\varphi }^{\mathbb{R}}(I_{a}^{b})$ of function of bounded total $\varphi -$variation in the sense of Riesz, where $ \lambda \in \mathbb{R} $, $ K \colon I_{a}^{b} \times I_{a}^{b} \rightarrow \mathbb{R} $ and $ f\colon I_{a}^{b} \times \mathbb{R} \rightarrow \mathbb{R}$ are suitable functions.
DOI : 10.5817/AM2013-1-51
Classification : 45G10
Keywords: existence and uniqueness of solutions of the Hammerstein integral equation in the plane; $\varphi $-bounded total variation norm on a rectangle
@article{10_5817_AM2013_1_51,
     author = {Az\'ocar, Luis and Leiva, Hugo and Matute, Jes\'us and Merentes, Nelson},
     title = {On the {Hammerstein} equation in the space of functions of bounded $\varphi $-variation in the plane},
     journal = {Archivum mathematicum},
     pages = {51--64},
     year = {2013},
     volume = {49},
     number = {1},
     doi = {10.5817/AM2013-1-51},
     mrnumber = {3073016},
     zbl = {06321148},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-51/}
}
TY  - JOUR
AU  - Azócar, Luis
AU  - Leiva, Hugo
AU  - Matute, Jesús
AU  - Merentes, Nelson
TI  - On the Hammerstein equation in the space of functions of bounded $\varphi $-variation in the plane
JO  - Archivum mathematicum
PY  - 2013
SP  - 51
EP  - 64
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-51/
DO  - 10.5817/AM2013-1-51
LA  - en
ID  - 10_5817_AM2013_1_51
ER  - 
%0 Journal Article
%A Azócar, Luis
%A Leiva, Hugo
%A Matute, Jesús
%A Merentes, Nelson
%T On the Hammerstein equation in the space of functions of bounded $\varphi $-variation in the plane
%J Archivum mathematicum
%D 2013
%P 51-64
%V 49
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-51/
%R 10.5817/AM2013-1-51
%G en
%F 10_5817_AM2013_1_51
Azócar, Luis; Leiva, Hugo; Matute, Jesús; Merentes, Nelson. On the Hammerstein equation in the space of functions of bounded $\varphi $-variation in the plane. Archivum mathematicum, Tome 49 (2013) no. 1, pp. 51-64. doi: 10.5817/AM2013-1-51

[1] Azis, W., Leiva, H., Merentes, N., Sánchez, J. L.: Functions of two variables with bounded $\varphi $–variation in the sense of Riesz. J. Math. Appl. 32 (2010), 5–23. | MR

[2] Aziz, W. A.: Algunas Extensiones a $\mathbb{R}^{2}$ de la Noción de Funciones con $\varphi $–Variación Acotada en el Sentido de Riesz y Controlabilidad de las RNC. Ph.D. thesis, Universidad Central de Venezuela, Facultad de Ciencias, Postgrado de Matemática, Caracas, 2009, in Spanish.

[3] Bugajeswska, D., Bugajewski, D., Hudzik, H.: $BV_{ \varphi } $–solutions of nonlinear integral equations. J. Math. Anal. Appl. 287 (2003), 265–278. | DOI | MR

[4] Bugajewska, D.: On the superposition operator in the space of functions of bounded variation, revisited. Math. Comput. Modelling 52 (2010), 791–796. | DOI | MR | Zbl

[5] Bugajewska, D., O ' Regan, D.: On nonlinear integral equations and $\Lambda $–bounded variation. gan, D., On nonlinear integral equations and $\Lambda $–bounded variation, Acta Math. Hungar. 107 (4) (2005), 295–306. | DOI | MR | Zbl

[6] Bugajewski, D.: On BV–solutions of some nonlinear integral equations. Integral Equations Operator Theory 46 (2003), 387–398. | DOI | MR | Zbl

[7] Pachpatte, B. G.: Multidimensional Integral Equations and Inequalities. Atlantis Studies in Mathematics for Engineering and Science, Atlantis Press, 2011. | MR | Zbl

[8] Schwabik, Š., Tvrdý, M., Vejvoda, O.: Differential and integral equations. Boundary value problems and adjoints. D. Reidel Publishing Co., Dordrecht–Boston, Mass.–London, 1979. | MR | Zbl

[9] Vaz, P. T., Deo, S. G.: On a Volterra–Stieltjets Integral Equation. J. Appl. Math. Stochastic Anal. 3 (1990) 3 (3) (1990), 177–191. | DOI | MR

Cité par Sources :