Keywords: existence and uniqueness of solutions of the Hammerstein integral equation in the plane; $\varphi $-bounded total variation norm on a rectangle
@article{10_5817_AM2013_1_51,
author = {Az\'ocar, Luis and Leiva, Hugo and Matute, Jes\'us and Merentes, Nelson},
title = {On the {Hammerstein} equation in the space of functions of bounded $\varphi $-variation in the plane},
journal = {Archivum mathematicum},
pages = {51--64},
year = {2013},
volume = {49},
number = {1},
doi = {10.5817/AM2013-1-51},
mrnumber = {3073016},
zbl = {06321148},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-51/}
}
TY - JOUR AU - Azócar, Luis AU - Leiva, Hugo AU - Matute, Jesús AU - Merentes, Nelson TI - On the Hammerstein equation in the space of functions of bounded $\varphi $-variation in the plane JO - Archivum mathematicum PY - 2013 SP - 51 EP - 64 VL - 49 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-51/ DO - 10.5817/AM2013-1-51 LA - en ID - 10_5817_AM2013_1_51 ER -
%0 Journal Article %A Azócar, Luis %A Leiva, Hugo %A Matute, Jesús %A Merentes, Nelson %T On the Hammerstein equation in the space of functions of bounded $\varphi $-variation in the plane %J Archivum mathematicum %D 2013 %P 51-64 %V 49 %N 1 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-51/ %R 10.5817/AM2013-1-51 %G en %F 10_5817_AM2013_1_51
Azócar, Luis; Leiva, Hugo; Matute, Jesús; Merentes, Nelson. On the Hammerstein equation in the space of functions of bounded $\varphi $-variation in the plane. Archivum mathematicum, Tome 49 (2013) no. 1, pp. 51-64. doi: 10.5817/AM2013-1-51
[1] Azis, W., Leiva, H., Merentes, N., Sánchez, J. L.: Functions of two variables with bounded $\varphi $–variation in the sense of Riesz. J. Math. Appl. 32 (2010), 5–23. | MR
[2] Aziz, W. A.: Algunas Extensiones a $\mathbb{R}^{2}$ de la Noción de Funciones con $\varphi $–Variación Acotada en el Sentido de Riesz y Controlabilidad de las RNC. Ph.D. thesis, Universidad Central de Venezuela, Facultad de Ciencias, Postgrado de Matemática, Caracas, 2009, in Spanish.
[3] Bugajeswska, D., Bugajewski, D., Hudzik, H.: $BV_{ \varphi } $–solutions of nonlinear integral equations. J. Math. Anal. Appl. 287 (2003), 265–278. | DOI | MR
[4] Bugajewska, D.: On the superposition operator in the space of functions of bounded variation, revisited. Math. Comput. Modelling 52 (2010), 791–796. | DOI | MR | Zbl
[5] Bugajewska, D., O ' Regan, D.: On nonlinear integral equations and $\Lambda $–bounded variation. gan, D., On nonlinear integral equations and $\Lambda $–bounded variation, Acta Math. Hungar. 107 (4) (2005), 295–306. | DOI | MR | Zbl
[6] Bugajewski, D.: On BV–solutions of some nonlinear integral equations. Integral Equations Operator Theory 46 (2003), 387–398. | DOI | MR | Zbl
[7] Pachpatte, B. G.: Multidimensional Integral Equations and Inequalities. Atlantis Studies in Mathematics for Engineering and Science, Atlantis Press, 2011. | MR | Zbl
[8] Schwabik, Š., Tvrdý, M., Vejvoda, O.: Differential and integral equations. Boundary value problems and adjoints. D. Reidel Publishing Co., Dordrecht–Boston, Mass.–London, 1979. | MR | Zbl
[9] Vaz, P. T., Deo, S. G.: On a Volterra–Stieltjets Integral Equation. J. Appl. Math. Stochastic Anal. 3 (1990) 3 (3) (1990), 177–191. | DOI | MR
Cité par Sources :