On those ordinary differential equations that are solved exactly by the improved Euler method
Archivum mathematicum, Tome 49 (2013) no. 1, pp. 29-34
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

As a numerical method for solving ordinary differential equations $y^{\prime }=f(x,y)$, the improved Euler method is not assumed to give exact solutions. In this paper we classify all cases where this method gives the exact solution for all initial conditions. We reduce an infinite system of partial differential equations for $f(x,y)$ to a finite system that is sufficient and necessary for the improved Euler method to give the exact solution. The improved Euler method is the simplest explicit second order Runge-Kutta method.
As a numerical method for solving ordinary differential equations $y^{\prime }=f(x,y)$, the improved Euler method is not assumed to give exact solutions. In this paper we classify all cases where this method gives the exact solution for all initial conditions. We reduce an infinite system of partial differential equations for $f(x,y)$ to a finite system that is sufficient and necessary for the improved Euler method to give the exact solution. The improved Euler method is the simplest explicit second order Runge-Kutta method.
DOI : 10.5817/AM2013-1-29
Classification : 34A99
Keywords: extended Euler; numerics; ordinary differential equations
@article{10_5817_AM2013_1_29,
     author = {Rivertz, Hans Jakob},
     title = {On those ordinary differential equations that are solved exactly by the improved {Euler} method},
     journal = {Archivum mathematicum},
     pages = {29--34},
     year = {2013},
     volume = {49},
     number = {1},
     doi = {10.5817/AM2013-1-29},
     mrnumber = {3073013},
     zbl = {06321145},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-29/}
}
TY  - JOUR
AU  - Rivertz, Hans Jakob
TI  - On those ordinary differential equations that are solved exactly by the improved Euler method
JO  - Archivum mathematicum
PY  - 2013
SP  - 29
EP  - 34
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-29/
DO  - 10.5817/AM2013-1-29
LA  - en
ID  - 10_5817_AM2013_1_29
ER  - 
%0 Journal Article
%A Rivertz, Hans Jakob
%T On those ordinary differential equations that are solved exactly by the improved Euler method
%J Archivum mathematicum
%D 2013
%P 29-34
%V 49
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-29/
%R 10.5817/AM2013-1-29
%G en
%F 10_5817_AM2013_1_29
Rivertz, Hans Jakob. On those ordinary differential equations that are solved exactly by the improved Euler method. Archivum mathematicum, Tome 49 (2013) no. 1, pp. 29-34. doi: 10.5817/AM2013-1-29

[1] Agarwal, R. P.: Difference equations and inequalities: Theory, methods, and applications. Pure and Applied Mathematics, 228, Marcel Dekker, 2000. | MR | Zbl

[2] Butcher, J. C., Wanner, G.: Runge–Kutta methods: some historical notes. Appl. Numer. Math. 22 (1996), 113–151. | DOI | MR | Zbl

[3] Carr, J. W., III, : Error bounds for the Runge–Kutta single–step integration process. J. Assoc. Comput. Mach. 5 (1958), 39–44. | DOI | MR

[4] Cieśliński, J. L.: On the exact discretization of the classical harmonic oscillator equation. J. Differ. Equations Appl. 17 (11) (2011), 1673–1694. | DOI | MR | Zbl

[5] Cieśliński, J. L., Ratkiewicz, B.: Energy–preserving numerical schemes of high accuracy for one–dimensional Hamiltonian systems. J. Phys. A 44 (2011), 1751–8113. | DOI | MR | Zbl

[6] Euler, L.: Institutionum calculi integralis. Impensis Academiae Imperialis Scientiarum, 1768–1770.

[7] Galler, B. A., Rozenberg, D. P.: A generalization of a theorem of Carr on error bounds for Runge-Kutta procedures. J. Assoc. Comput. Mach. 7 (1960), 57–60. | DOI | MR | Zbl

[8] González–Pinto, S., Hernández–Abreu, D.: Global error estimates for a uniparametric family of stiffly accurate Runge–Kutta collocation methods on singularly perturbed problems. BIT 51 (1) (2011), 155–175. | DOI | MR | Zbl

[9] Hairer, E., Lubich, Ch., Roche, M.: Error of Runge–Kutta methods for stiff problems studied via differential algebraic equations. BIT 28 (1988), 678–700. | DOI | MR | Zbl

[10] Ixaru, L. G., Vanden Berghe, G.: Exponential fitting. Kluwer Academic Publishers, 2004. | MR | Zbl

[11] Lotkin, M.: On the accuracy of Runge–Kutta’s method. Math. Tables Aids Comput. 5 (1951), 128–133. | DOI | MR | Zbl

[12] Mickens, R. E.: Nonstandard finite difference models of differential equations. World Scientific Publishing Co. Inc., 1994. | MR | Zbl

[13] Potts, R. B.: Differential and difference equations. Amer. Math. Monthly 89 (1982), 402–407. | DOI | MR | Zbl

[14] Ralston, A.: Runge–Kutta methods with minimum error bounds. Math. Comput. 16 (1962), 431–437. | DOI | MR | Zbl

[15] Runge, C.: Über die numerische Auflösung von Differentialgleichungen. Math. Ann. 46 (1895), 167–178. | DOI | MR

[16] Runge, C.: Über die numerische Auflösung von totaler Differentialgleichungen. Gött. Nachr. (1905).

Cité par Sources :