Keywords: extended Euler; numerics; ordinary differential equations
@article{10_5817_AM2013_1_29,
author = {Rivertz, Hans Jakob},
title = {On those ordinary differential equations that are solved exactly by the improved {Euler} method},
journal = {Archivum mathematicum},
pages = {29--34},
year = {2013},
volume = {49},
number = {1},
doi = {10.5817/AM2013-1-29},
mrnumber = {3073013},
zbl = {06321145},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-29/}
}
TY - JOUR AU - Rivertz, Hans Jakob TI - On those ordinary differential equations that are solved exactly by the improved Euler method JO - Archivum mathematicum PY - 2013 SP - 29 EP - 34 VL - 49 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-29/ DO - 10.5817/AM2013-1-29 LA - en ID - 10_5817_AM2013_1_29 ER -
%0 Journal Article %A Rivertz, Hans Jakob %T On those ordinary differential equations that are solved exactly by the improved Euler method %J Archivum mathematicum %D 2013 %P 29-34 %V 49 %N 1 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-29/ %R 10.5817/AM2013-1-29 %G en %F 10_5817_AM2013_1_29
Rivertz, Hans Jakob. On those ordinary differential equations that are solved exactly by the improved Euler method. Archivum mathematicum, Tome 49 (2013) no. 1, pp. 29-34. doi: 10.5817/AM2013-1-29
[1] Agarwal, R. P.: Difference equations and inequalities: Theory, methods, and applications. Pure and Applied Mathematics, 228, Marcel Dekker, 2000. | MR | Zbl
[2] Butcher, J. C., Wanner, G.: Runge–Kutta methods: some historical notes. Appl. Numer. Math. 22 (1996), 113–151. | DOI | MR | Zbl
[3] Carr, J. W., III, : Error bounds for the Runge–Kutta single–step integration process. J. Assoc. Comput. Mach. 5 (1958), 39–44. | DOI | MR
[4] Cieśliński, J. L.: On the exact discretization of the classical harmonic oscillator equation. J. Differ. Equations Appl. 17 (11) (2011), 1673–1694. | DOI | MR | Zbl
[5] Cieśliński, J. L., Ratkiewicz, B.: Energy–preserving numerical schemes of high accuracy for one–dimensional Hamiltonian systems. J. Phys. A 44 (2011), 1751–8113. | DOI | MR | Zbl
[6] Euler, L.: Institutionum calculi integralis. Impensis Academiae Imperialis Scientiarum, 1768–1770.
[7] Galler, B. A., Rozenberg, D. P.: A generalization of a theorem of Carr on error bounds for Runge-Kutta procedures. J. Assoc. Comput. Mach. 7 (1960), 57–60. | DOI | MR | Zbl
[8] González–Pinto, S., Hernández–Abreu, D.: Global error estimates for a uniparametric family of stiffly accurate Runge–Kutta collocation methods on singularly perturbed problems. BIT 51 (1) (2011), 155–175. | DOI | MR | Zbl
[9] Hairer, E., Lubich, Ch., Roche, M.: Error of Runge–Kutta methods for stiff problems studied via differential algebraic equations. BIT 28 (1988), 678–700. | DOI | MR | Zbl
[10] Ixaru, L. G., Vanden Berghe, G.: Exponential fitting. Kluwer Academic Publishers, 2004. | MR | Zbl
[11] Lotkin, M.: On the accuracy of Runge–Kutta’s method. Math. Tables Aids Comput. 5 (1951), 128–133. | DOI | MR | Zbl
[12] Mickens, R. E.: Nonstandard finite difference models of differential equations. World Scientific Publishing Co. Inc., 1994. | MR | Zbl
[13] Potts, R. B.: Differential and difference equations. Amer. Math. Monthly 89 (1982), 402–407. | DOI | MR | Zbl
[14] Ralston, A.: Runge–Kutta methods with minimum error bounds. Math. Comput. 16 (1962), 431–437. | DOI | MR | Zbl
[15] Runge, C.: Über die numerische Auflösung von Differentialgleichungen. Math. Ann. 46 (1895), 167–178. | DOI | MR
[16] Runge, C.: Über die numerische Auflösung von totaler Differentialgleichungen. Gött. Nachr. (1905).
Cité par Sources :