Some surjectivity theorems with applications
Archivum mathematicum, Tome 49 (2013) no. 1, pp. 17-27 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper a new class of mappings, known as locally $\lambda $-strongly $\phi $-accretive mappings, where $\lambda $ and $\phi $ have special meanings, is introduced. This class of mappings constitutes a generalization of the well-known monotone mappings, accretive mappings and strongly $\phi $-accretive mappings. Subsequently, the above notion is used to extend the results of Park and Park, Browder and Ray to locally $\lambda $-strongly $\phi $-accretive mappings by using Caristi-Kirk fixed point theorem. In the sequel, we introduce the notion of generalized directional contractor and prove a surjectivity theorem which is used to solve certain functional equations in Banach spaces.
In this paper a new class of mappings, known as locally $\lambda $-strongly $\phi $-accretive mappings, where $\lambda $ and $\phi $ have special meanings, is introduced. This class of mappings constitutes a generalization of the well-known monotone mappings, accretive mappings and strongly $\phi $-accretive mappings. Subsequently, the above notion is used to extend the results of Park and Park, Browder and Ray to locally $\lambda $-strongly $\phi $-accretive mappings by using Caristi-Kirk fixed point theorem. In the sequel, we introduce the notion of generalized directional contractor and prove a surjectivity theorem which is used to solve certain functional equations in Banach spaces.
DOI : 10.5817/AM2013-1-17
Classification : 47H05, 47H15
Keywords: strongly $\phi $-accretive; locally strongly $\phi $-accretive; locally $\lambda $-strongly $\phi $-accretive; fixed point theorem
@article{10_5817_AM2013_1_17,
     author = {Pathak, H. K. and Mishra, S. N.},
     title = {Some surjectivity theorems with applications},
     journal = {Archivum mathematicum},
     pages = {17--27},
     year = {2013},
     volume = {49},
     number = {1},
     doi = {10.5817/AM2013-1-17},
     mrnumber = {3073012},
     zbl = {06321144},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-17/}
}
TY  - JOUR
AU  - Pathak, H. K.
AU  - Mishra, S. N.
TI  - Some surjectivity theorems with applications
JO  - Archivum mathematicum
PY  - 2013
SP  - 17
EP  - 27
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-17/
DO  - 10.5817/AM2013-1-17
LA  - en
ID  - 10_5817_AM2013_1_17
ER  - 
%0 Journal Article
%A Pathak, H. K.
%A Mishra, S. N.
%T Some surjectivity theorems with applications
%J Archivum mathematicum
%D 2013
%P 17-27
%V 49
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-17/
%R 10.5817/AM2013-1-17
%G en
%F 10_5817_AM2013_1_17
Pathak, H. K.; Mishra, S. N. Some surjectivity theorems with applications. Archivum mathematicum, Tome 49 (2013) no. 1, pp. 17-27. doi: 10.5817/AM2013-1-17

[1] Altman, M.: Contractor directions, directional contractors and directional contractions for solving equations. Pacific J. Math. 62 (1976), 1–18. | DOI | MR | Zbl

[2] Altman, M.: Contractors and contractor directions theory and applications. Marcel Dekker, New York, 1977. | MR | Zbl

[3] Altman, M.: Weak contractor directions and weak directional contractions. Nonlinear Anal. 7 (1983), 1043–1049. | MR | Zbl

[4] Browder, F. E.: Normal solvability and existence theorems for nonlinear mappings in Banach spaces. Problems in Nonlinear Analysis (C.I.M.E., IV Ciclo, Varenna, 1970), pp. 17–35, Edizioni Cremones, Rome, Italy, 1971. | MR | Zbl

[5] Browder, F. E.: Normal solvability for nonlinear mappings and the geometry of Banach spaces. Problems in Nonlinear Analysis,C.I.M.E., IV Ciclo, Varenna, 1970, pp. 37–66, Edizioni Cremonese, Rome, Italy, 1971. | MR | Zbl

[6] Browder, F. E.: Normal solvability $\phi $–accretive mappings of Banach spaces. Bull. Amer. Math. Soc. 78 (1972), 186–192. | DOI | MR

[7] Browder, F. E.: Nonlinear operators and nonlinear equations of evolution in Banach spaces. Proc. Sympos. Pure Math., vol. 18, Amer. Math. Soc., Providence, 1976. | MR | Zbl

[8] Caristi, J.: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 215 (1976), 241–251. | DOI | MR | Zbl

[9] Ekeland, I.: Sur les problems variationnels. C. R. Acad. Sci. Paris Sér. I Math. 275 (1972), 1057–1059. | MR

[10] Goebel, K., Kirk, W. A.: Topics in metric fixed point theory. Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, 1990. | MR | Zbl

[11] Kirk, W. A.: Caristi’s fixed point theorem and the theory of normal solvability. Proc. Conf. Fixed Point Theory and its Applications (Dalhousie Univ., June 1975), Academic Press, 1976, pp. 109–120. | MR | Zbl

[12] Park, J. A., Park, S.: Surjectivity of $\phi $–accretive operators. Proc. Amer. Math. Soc. 90 (2) (1984), 289–292. | MR

[13] Ray, W. O.: Phi–accretive operators and Ekeland’s theorem. J. Math. Anal. Appl. 88 (1982), 566–571. | DOI | MR | Zbl

[14] Ray, W. O., Walker, A. M.: Mapping theorems for Gâteaux differentiable and accretive operators. Nonlinear Anal. 6 (5) (1982), 423–433. | DOI | MR | Zbl

Cité par Sources :