Keywords: strongly $\phi $-accretive; locally strongly $\phi $-accretive; locally $\lambda $-strongly $\phi $-accretive; fixed point theorem
@article{10_5817_AM2013_1_17,
author = {Pathak, H. K. and Mishra, S. N.},
title = {Some surjectivity theorems with applications},
journal = {Archivum mathematicum},
pages = {17--27},
year = {2013},
volume = {49},
number = {1},
doi = {10.5817/AM2013-1-17},
mrnumber = {3073012},
zbl = {06321144},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-17/}
}
Pathak, H. K.; Mishra, S. N. Some surjectivity theorems with applications. Archivum mathematicum, Tome 49 (2013) no. 1, pp. 17-27. doi: 10.5817/AM2013-1-17
[1] Altman, M.: Contractor directions, directional contractors and directional contractions for solving equations. Pacific J. Math. 62 (1976), 1–18. | DOI | MR | Zbl
[2] Altman, M.: Contractors and contractor directions theory and applications. Marcel Dekker, New York, 1977. | MR | Zbl
[3] Altman, M.: Weak contractor directions and weak directional contractions. Nonlinear Anal. 7 (1983), 1043–1049. | MR | Zbl
[4] Browder, F. E.: Normal solvability and existence theorems for nonlinear mappings in Banach spaces. Problems in Nonlinear Analysis (C.I.M.E., IV Ciclo, Varenna, 1970), pp. 17–35, Edizioni Cremones, Rome, Italy, 1971. | MR | Zbl
[5] Browder, F. E.: Normal solvability for nonlinear mappings and the geometry of Banach spaces. Problems in Nonlinear Analysis,C.I.M.E., IV Ciclo, Varenna, 1970, pp. 37–66, Edizioni Cremonese, Rome, Italy, 1971. | MR | Zbl
[6] Browder, F. E.: Normal solvability $\phi $–accretive mappings of Banach spaces. Bull. Amer. Math. Soc. 78 (1972), 186–192. | DOI | MR
[7] Browder, F. E.: Nonlinear operators and nonlinear equations of evolution in Banach spaces. Proc. Sympos. Pure Math., vol. 18, Amer. Math. Soc., Providence, 1976. | MR | Zbl
[8] Caristi, J.: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 215 (1976), 241–251. | DOI | MR | Zbl
[9] Ekeland, I.: Sur les problems variationnels. C. R. Acad. Sci. Paris Sér. I Math. 275 (1972), 1057–1059. | MR
[10] Goebel, K., Kirk, W. A.: Topics in metric fixed point theory. Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, 1990. | MR | Zbl
[11] Kirk, W. A.: Caristi’s fixed point theorem and the theory of normal solvability. Proc. Conf. Fixed Point Theory and its Applications (Dalhousie Univ., June 1975), Academic Press, 1976, pp. 109–120. | MR | Zbl
[12] Park, J. A., Park, S.: Surjectivity of $\phi $–accretive operators. Proc. Amer. Math. Soc. 90 (2) (1984), 289–292. | MR
[13] Ray, W. O.: Phi–accretive operators and Ekeland’s theorem. J. Math. Anal. Appl. 88 (1982), 566–571. | DOI | MR | Zbl
[14] Ray, W. O., Walker, A. M.: Mapping theorems for Gâteaux differentiable and accretive operators. Nonlinear Anal. 6 (5) (1982), 423–433. | DOI | MR | Zbl
Cité par Sources :