A remark on almost umbilical hypersurfaces
Archivum mathematicum, Tome 49 (2013) no. 1, pp. 1-7 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this article, we prove new stability results for almost-Einstein hypersurfaces of the Euclidean space, based on previous eigenvalue pinching results. Then, we deduce some comparable results for almost umbilical hypersurfaces.
In this article, we prove new stability results for almost-Einstein hypersurfaces of the Euclidean space, based on previous eigenvalue pinching results. Then, we deduce some comparable results for almost umbilical hypersurfaces.
DOI : 10.5817/AM2013-1-1
Classification : 53A07, 53A10, 53C20, 53C24
Keywords: hypersurfaces; rigidity; pinching; Ricci curvature; umbilicity tensor; higher order mean curvatures; $\theta $-quasi-isometry
@article{10_5817_AM2013_1_1,
     author = {Roth, Julien},
     title = {A remark on almost umbilical hypersurfaces},
     journal = {Archivum mathematicum},
     pages = {1--7},
     year = {2013},
     volume = {49},
     number = {1},
     doi = {10.5817/AM2013-1-1},
     mrnumber = {3073010},
     zbl = {06321142},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-1/}
}
TY  - JOUR
AU  - Roth, Julien
TI  - A remark on almost umbilical hypersurfaces
JO  - Archivum mathematicum
PY  - 2013
SP  - 1
EP  - 7
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-1/
DO  - 10.5817/AM2013-1-1
LA  - en
ID  - 10_5817_AM2013_1_1
ER  - 
%0 Journal Article
%A Roth, Julien
%T A remark on almost umbilical hypersurfaces
%J Archivum mathematicum
%D 2013
%P 1-7
%V 49
%N 1
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2013-1-1/
%R 10.5817/AM2013-1-1
%G en
%F 10_5817_AM2013_1_1
Roth, Julien. A remark on almost umbilical hypersurfaces. Archivum mathematicum, Tome 49 (2013) no. 1, pp. 1-7. doi: 10.5817/AM2013-1-1

[1] Aubry, E.: Finiteness of $\pi _1$ and geometric inequalities in almost positive Ricci curvature. Ann. Sci. École Norm. Sup. (4) 40 (4) (2007), 6757–695. | MR | Zbl

[2] Colbois, B., Grosjean, J. F.: A pinching theorem for the first eigenvalue of the Laplacian on hypersurfaces of the Euclidean space. Comment. Math. Helv. 82 (2007), 175–195. | DOI | MR | Zbl

[3] Fialkow, A.: Hypersurfaces of a space of constant curvature. Ann. of Math. (2) 39 (1938), 762–783. | DOI | MR | Zbl

[4] Grosjean, J. F.: Upper bounds for the first eigenvalue of the Laplacian on compact manifolds. Pacific J. Math. 206 (1) (2002), 93–111. | DOI | MR

[5] Grosjean, J. F., Roth, J.: Eigenvalue pinching and application to the stability and the almost umbilicity of hypersurfaces. Math. Z. 271 (1) (2012), 469–488. | DOI | MR | Zbl

[6] Hoffman, D., Spruck, D.: Sobolev and isoperimetric inequalities for Riemannian submanifolds. Comm. Pure Appl. Math. 27 (1974), 715–727. | DOI | MR | Zbl

[7] Reilly, R.C.: On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space. Comment. Math. Helv. 52 (1977), 525–533. | DOI | MR | Zbl

[8] Roth, J.: Pinching of the first eigenvalue of the Laplacian and almost-Einstein hypersurfaces of Euclidean space. Ann. Global Anal. Geom. 33 (3) (2008), 293–306. | DOI | MR

[9] Shiohama, K., Xu, H.: Rigidity and sphere theorems for submanifolds. Kyushu J. Math. 48 (2) (1994), 291–306. | DOI | MR | Zbl

[10] Shiohama, K., Xu, H.: Rigidity and sphere theorems for submanifolds II. Kyushu J. Math. 54 (1) (2000), 103–109. | DOI | MR | Zbl

[11] Thomas, T. Y.: On closed space of constant mean curvature. Amer. J. Math. 58 (1936), 702–704. | DOI | MR

[12] Vlachos, T.: Almost-Einstein hypersurfaces in the Euclidean space. Illinois J. Math. 53 (4) (2009), 1221–1235. | MR | Zbl

Cité par Sources :