Keywords: Poisson sigma models; Poisson manifolds; Poisson-Lie groups; bundle maps
@article{10_5817_AM2012_5_423,
author = {Vysok\'y, Jan and Hlavat\'y, Ladislav},
title = {Poisson{\textendash}Lie sigma models on {Drinfel{\textquoteright}d} double},
journal = {Archivum mathematicum},
pages = {423--447},
year = {2012},
volume = {48},
number = {5},
doi = {10.5817/AM2012-5-423},
mrnumber = {3007623},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-423/}
}
Vysoký, Jan; Hlavatý, Ladislav. Poisson–Lie sigma models on Drinfel’d double. Archivum mathematicum, Tome 48 (2012) no. 5, pp. 423-447. doi: 10.5817/AM2012-5-423
[1] Bojowald, M., Kotov, A., Strobl, T.: Lie algebroid morphisms, Poisson Sigma Models, and off-shell closed gauge symmetries. J. Geom. Phys. 54 (2005), 400–426. | DOI | MR | Zbl
[2] Calvo, I.: Poisson sigma models on surfaces with boundary: Classical and quantum aspects. Ph.D. thesis, University of Zaragoza, 2006.
[3] Calvo, I., Falceto, F., García–Álvarez, D.: Topological Poisson sigma models on Poisson–Lie groups. JHEP, 0310 (033), 2003. | MR
[4] Dufour, J–P., Zung, N. T.: Poisson Structures and Their Normal Forms. Progr. Math., vol. 242, Birkhäuser Verlag, 2005. | MR | Zbl
[5] Klimčík, C.: Yang–Baxter $\sigma $–models and $d{S}/{A}d{S}$ T–Duality. JHEP, 0212 (051), 2002.
[6] Klimčík, C., Ševera, P.: T–duality and the moment map. hep-th/9610198. | Zbl
[7] Klimčík, C., Ševera, P.: Poisson–Lie T–duality and loops of Drinfeld doubles. Phys. Lett. B 375 (1996), 65–71.
[8] Lu, J., Weinstein, A.: Poisson Lie groups, dressing transformations, and Bruhat decompositions. J. Differential Geom. 31 (1990), 501–526. | MR | Zbl
[9] Nakahara, M.: Geometry, Topology and Physics. Taylor & Francis, 2003. | MR | Zbl
[10] Schaller, P., Strobl, T.: Poisson–Sigma–Models: A generalization of 2–D gravity Yang–Mills–systems. hep-th/9411163.
[11] Schaller, P., Strobl, T.: Poisson structure induced (topological) field theories. Mod. Phys. Lett. A9 (1994), 3129–3136. | DOI | MR | Zbl
[12] Steenrod, N.: The Topology of Fibre Bundles. Princeton University Press, 1951. | MR | Zbl
[13] Vaisman, I.: Lectures on the Geometry of Poisson Manifolds. Progr. Math., vol. 118, Birkhäuser Verlag, 2005. | MR
Cité par Sources :