Yamabe operator via BGG sequences
Archivum mathematicum, Tome 48 (2012) no. 5, pp. 411-422 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show that the conformally invariant Yamabe operator on a complex conformal manifold can be constructed as a first BGG operator by inducing from certain infinite-dimensional representation.
We show that the conformally invariant Yamabe operator on a complex conformal manifold can be constructed as a first BGG operator by inducing from certain infinite-dimensional representation.
DOI : 10.5817/AM2012-5-411
Classification : 53A30, 53A55, 58J10
Keywords: Bernstein-Gelfand-Gelfand resolution; Cartan connection; parabolic geometry; Yamabe operator
@article{10_5817_AM2012_5_411,
     author = {Tu\v{c}ek, V{\'\i}t},
     title = {Yamabe operator via {BGG} sequences},
     journal = {Archivum mathematicum},
     pages = {411--422},
     year = {2012},
     volume = {48},
     number = {5},
     doi = {10.5817/AM2012-5-411},
     mrnumber = {3007622},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-411/}
}
TY  - JOUR
AU  - Tuček, Vít
TI  - Yamabe operator via BGG sequences
JO  - Archivum mathematicum
PY  - 2012
SP  - 411
EP  - 422
VL  - 48
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-411/
DO  - 10.5817/AM2012-5-411
LA  - en
ID  - 10_5817_AM2012_5_411
ER  - 
%0 Journal Article
%A Tuček, Vít
%T Yamabe operator via BGG sequences
%J Archivum mathematicum
%D 2012
%P 411-422
%V 48
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-411/
%R 10.5817/AM2012-5-411
%G en
%F 10_5817_AM2012_5_411
Tuček, Vít. Yamabe operator via BGG sequences. Archivum mathematicum, Tome 48 (2012) no. 5, pp. 411-422. doi: 10.5817/AM2012-5-411

[1] Calderbank, D. M. J., Diemer, T.: Differential invariants and curved Bernstein–Gelfand–Gelfand sequences. J. Reine Angew. Math. 537 (2001), 67–103. | MR | Zbl

[2] Cap, A., Gover, A. R, Hammerl, M.: Projective BGG equations, algebraic sets, and compactifications of Einstein geometries. arXiv:1005.2246, May 2010.

[3] Čap, A., Slovák, J.: Parabolic geometries. I. Math. Surveys Monogr., American Mathematical Society, 2009. | MR | Zbl

[4] Čap, A., Slovák, J., Souček, V.: Bernstein–Gelfand–Gelfand Sequences. Ann. of Math. (2) 154 (1) (2001), 97–113. | DOI | MR | Zbl

[5] Davidson, M. G., Enright, T. J., Stanke, R. J.: Differential operators and highest weight representations. Mem. Amer. Math. Soc. 94 (455) (1991), iv+102. | MR | Zbl

[6] Enright, T., Howe, R., Wallach, N.: A classification of unitary highest weight modules. Representation theory of reductive groups (Park City, Utah, 1982), Birkhäuser Boston, 1983. | MR | Zbl

[7] Enright, T. J.: Analogues of Kostant’s $\mathfrak{u}$–cohomology formulas for unitary highest weight modules. 392 (1988), 27–36. | MR

[8] Gover, A. R., Hirachi, K.: Conformally invariant powers of the Laplacian – A complete nonexistence theorem. J. Amer. Math. Soc. 17 (2004), 389–405. | DOI | MR | Zbl

[9] Graham, C. R.: Conformally invariant powers of the Laplacian. II. Nonexistence. J. London Math. Soc. (2) 46 (3) (1992), 566–576. | DOI | MR | Zbl

[10] Huang, Jing–Song, Pandžič, P., Renard, D.: Dirac operators and Lie algebra cohomology. Represent. Theory 10 (2006), 299–313. | DOI | MR | Zbl

[11] Kostant, B.: Lie algebra cohomology and the generalized Borel–Weil Theorem. Ann. of Math. (2) 74 (1961), 329–387. | DOI | MR | Zbl

[12] Pandžič, P.: Dirac operators on Weil representations II. Math. Commun. 15 (2) (2010), 411–424. | MR | Zbl

[13] Vogan, D. A., Jr., : Unitary representations and complex analysis. Representation theory and complex analysis, Lecture Notes in Math., vol. 1931, Springer, Berlin, 2008, pp. 259–344. | MR | Zbl

Cité par Sources :