Penrose transform and monogenic sections
Archivum mathematicum, Tome 48 (2012) no. 5, pp. 399-410 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The Penrose transform gives an isomorphism between the kernel of the $2$-Dirac operator over an affine subset and the third sheaf cohomology group on the twistor space. In the paper we give an integral formula which realizes the isomorphism and decompose the kernel as a module of the Levi factor of the parabolic subgroup. This gives a new insight into the structure of the kernel of the operator.
The Penrose transform gives an isomorphism between the kernel of the $2$-Dirac operator over an affine subset and the third sheaf cohomology group on the twistor space. In the paper we give an integral formula which realizes the isomorphism and decompose the kernel as a module of the Levi factor of the parabolic subgroup. This gives a new insight into the structure of the kernel of the operator.
DOI : 10.5817/AM2012-5-399
Classification : 35A22, 58J10
Keywords: Penrose transform; monogenic spinors
@article{10_5817_AM2012_5_399,
     author = {Sala\v{c}, Tom\'a\v{s}},
     title = {Penrose transform and monogenic sections},
     journal = {Archivum mathematicum},
     pages = {399--410},
     year = {2012},
     volume = {48},
     number = {5},
     doi = {10.5817/AM2012-5-399},
     mrnumber = {3007621},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-399/}
}
TY  - JOUR
AU  - Salač, Tomáš
TI  - Penrose transform and monogenic sections
JO  - Archivum mathematicum
PY  - 2012
SP  - 399
EP  - 410
VL  - 48
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-399/
DO  - 10.5817/AM2012-5-399
LA  - en
ID  - 10_5817_AM2012_5_399
ER  - 
%0 Journal Article
%A Salač, Tomáš
%T Penrose transform and monogenic sections
%J Archivum mathematicum
%D 2012
%P 399-410
%V 48
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-399/
%R 10.5817/AM2012-5-399
%G en
%F 10_5817_AM2012_5_399
Salač, Tomáš. Penrose transform and monogenic sections. Archivum mathematicum, Tome 48 (2012) no. 5, pp. 399-410. doi: 10.5817/AM2012-5-399

[1] Baston, R. J.: Quaternionic complexes. J. Geom. Phys. 8 (1992), 29–52. | DOI | MR | Zbl

[2] Baston, R. J., Eastwood, M.: The Penrose transform – its interaction with representation theory. Oxford University Press, 1989. | MR | Zbl

[3] Čap, A., Slovák, J.: Parabolic Geometries I, Background and General Theory. American Mathematical Society, Providence, 2009. | MR | Zbl

[4] Colombo, F., Sabadini, I., Sommen, F., Struppa, D. C.: Analysis of Dirac Systems and Computational Algebra. Birkhäauser, Boston, 2004. | MR | Zbl

[5] Franek, P.: Generalized Dolbeault Sequences in Parabolic Geometry. J. Lie Theory 18 (4) (2008), 757–773. | MR | Zbl

[6] Goodman, R., Wallach, N. R.: Representations and Invariants of the Classical Groups. Cambridge University Press, 1998. | MR | Zbl

[7] Krump, L., Salač, T.: Exactness of the Generalized Dolbeault Complex for k Dirac Operators in the Stable Rank. Numerical Analysis and Applied Mathematics ICNAAM, vol. 1479, 2012, pp. 300–303.

[8] Salač, T.: k-Dirac operators and parabolic geometries. arXiv:1201.0355, 2012.

[9] Salač, T.: The generalized Dolbeault complexes in Clifford analysis. Ph.D. thesis, MFF UK UUK, Prague, 2012.

[10] Ward, R. S., Wells, R. O., Jr., : Twistor Geometry and Field. Cambridge University Press, 1990. | MR

Cité par Sources :