Penrose transform and monogenic sections
Archivum mathematicum, Tome 48 (2012) no. 5, pp. 399-410
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The Penrose transform gives an isomorphism between the kernel of the $2$-Dirac operator over an affine subset and the third sheaf cohomology group on the twistor space. In the paper we give an integral formula which realizes the isomorphism and decompose the kernel as a module of the Levi factor of the parabolic subgroup. This gives a new insight into the structure of the kernel of the operator.
DOI :
10.5817/AM2012-5-399
Classification :
35A22, 58J10
Keywords: Penrose transform; monogenic spinors
Keywords: Penrose transform; monogenic spinors
@article{10_5817_AM2012_5_399,
author = {Sala\v{c}, Tom\'a\v{s}},
title = {Penrose transform and monogenic sections},
journal = {Archivum mathematicum},
pages = {399--410},
publisher = {mathdoc},
volume = {48},
number = {5},
year = {2012},
doi = {10.5817/AM2012-5-399},
mrnumber = {3007621},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-399/}
}
Salač, Tomáš. Penrose transform and monogenic sections. Archivum mathematicum, Tome 48 (2012) no. 5, pp. 399-410. doi: 10.5817/AM2012-5-399
Cité par Sources :