Keywords: Penrose transform; monogenic spinors
@article{10_5817_AM2012_5_399,
author = {Sala\v{c}, Tom\'a\v{s}},
title = {Penrose transform and monogenic sections},
journal = {Archivum mathematicum},
pages = {399--410},
year = {2012},
volume = {48},
number = {5},
doi = {10.5817/AM2012-5-399},
mrnumber = {3007621},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-399/}
}
Salač, Tomáš. Penrose transform and monogenic sections. Archivum mathematicum, Tome 48 (2012) no. 5, pp. 399-410. doi: 10.5817/AM2012-5-399
[1] Baston, R. J.: Quaternionic complexes. J. Geom. Phys. 8 (1992), 29–52. | DOI | MR | Zbl
[2] Baston, R. J., Eastwood, M.: The Penrose transform – its interaction with representation theory. Oxford University Press, 1989. | MR | Zbl
[3] Čap, A., Slovák, J.: Parabolic Geometries I, Background and General Theory. American Mathematical Society, Providence, 2009. | MR | Zbl
[4] Colombo, F., Sabadini, I., Sommen, F., Struppa, D. C.: Analysis of Dirac Systems and Computational Algebra. Birkhäauser, Boston, 2004. | MR | Zbl
[5] Franek, P.: Generalized Dolbeault Sequences in Parabolic Geometry. J. Lie Theory 18 (4) (2008), 757–773. | MR | Zbl
[6] Goodman, R., Wallach, N. R.: Representations and Invariants of the Classical Groups. Cambridge University Press, 1998. | MR | Zbl
[7] Krump, L., Salač, T.: Exactness of the Generalized Dolbeault Complex for k Dirac Operators in the Stable Rank. Numerical Analysis and Applied Mathematics ICNAAM, vol. 1479, 2012, pp. 300–303.
[8] Salač, T.: k-Dirac operators and parabolic geometries. arXiv:1201.0355, 2012.
[9] Salač, T.: The generalized Dolbeault complexes in Clifford analysis. Ph.D. thesis, MFF UK UUK, Prague, 2012.
[10] Ward, R. S., Wells, R. O., Jr., : Twistor Geometry and Field. Cambridge University Press, 1990. | MR
Cité par Sources :