Riemannian symmetries in flag manifolds
Archivum mathematicum, Tome 48 (2012) no. 5, pp. 387-398.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Flag manifolds are in general not symmetric spaces. But they are provided with a structure of $\mathbb{Z}_2^k$-symmetric space. We describe the Riemannian metrics adapted to this structure and some properties of reducibility. The conditions for a metric adapted to the $\mathbb{Z}_2^2$-symmetric structure to be naturally reductive are detailed for the flag manifold $SO(5)/SO(2)\times SO(2) \times SO(1)$.
DOI : 10.5817/AM2012-5-387
Classification : 53C30
Keywords: $\mathbb{Z}_2^k$-symmetric space; flag manifolds; Riemannian metrics
@article{10_5817_AM2012_5_387,
     author = {Piu, Paola and Remm, Elisabeth},
     title = {Riemannian symmetries in flag manifolds},
     journal = {Archivum mathematicum},
     pages = {387--398},
     publisher = {mathdoc},
     volume = {48},
     number = {5},
     year = {2012},
     doi = {10.5817/AM2012-5-387},
     mrnumber = {3007620},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-387/}
}
TY  - JOUR
AU  - Piu, Paola
AU  - Remm, Elisabeth
TI  - Riemannian symmetries in flag manifolds
JO  - Archivum mathematicum
PY  - 2012
SP  - 387
EP  - 398
VL  - 48
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-387/
DO  - 10.5817/AM2012-5-387
LA  - en
ID  - 10_5817_AM2012_5_387
ER  - 
%0 Journal Article
%A Piu, Paola
%A Remm, Elisabeth
%T Riemannian symmetries in flag manifolds
%J Archivum mathematicum
%D 2012
%P 387-398
%V 48
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-387/
%R 10.5817/AM2012-5-387
%G en
%F 10_5817_AM2012_5_387
Piu, Paola; Remm, Elisabeth. Riemannian symmetries in flag manifolds. Archivum mathematicum, Tome 48 (2012) no. 5, pp. 387-398. doi : 10.5817/AM2012-5-387. http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-387/

Cité par Sources :