Keywords: $\mathbb{Z}_2^k$-symmetric space; flag manifolds; Riemannian metrics
@article{10_5817_AM2012_5_387,
author = {Piu, Paola and Remm, Elisabeth},
title = {Riemannian symmetries in flag manifolds},
journal = {Archivum mathematicum},
pages = {387--398},
year = {2012},
volume = {48},
number = {5},
doi = {10.5817/AM2012-5-387},
mrnumber = {3007620},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-387/}
}
Piu, Paola; Remm, Elisabeth. Riemannian symmetries in flag manifolds. Archivum mathematicum, Tome 48 (2012) no. 5, pp. 387-398. doi: 10.5817/AM2012-5-387
[1] Arias–Marco, T., Kowalski, O.: Classification of 4–dimensional homogeneous D’Atri spaces. Czechoslovak Math. J. 58 (1) (2008), 203–239. | DOI | MR | Zbl
[2] Bahturin, Y., Goze, M.: $\mathbb{Z}_2^2$–symmetric spaces. Pacific J. Math. 236 (1) (2008), 1–21. | DOI | MR
[3] Bouyakoub, A., Goze, M., Remm, E.: On Riemannian non symmetric spaces and flag manifolds. arXiv:math/0609790. | MR
[4] Goze, M., Remm, E.: $\Gamma $–symmetric spaces. Differential geometry, World Sci. Publ., Hackensack, NJ, 2009, pp. 195–206. | MR | Zbl
[5] Kobayashi, S., Nomizu, K.: Foundations of differential geometry, Vollume II. llume II, Interscience Tracts in Pure and Applied Mathematics, No. 15, Interscience Publishers John Wiley and Sons, Inc., New York–London–Sydney, 1969. | MR
[6] Kobayashi, S., Nomizu, K.: Foundations of differential geometry, volume I. lume I, Interscience Publishers, John Wiley and Sons, New York–London, 1963. | MR
[7] Kollross, A.: Exceptional $Z_2\times Z_2$–symmetric spaces. Pacific J. Math. 242 (1) (2009), 113–130. | DOI | MR
[8] Kowalski, O.: Generalized symmetric spaces, volume II. lume II, Lecture Notes in Math. 805, Springer–Verlag, Berlin–New York, 1980. | MR
[9] Lutz, R.: Sur la géométrie des espaces $\Gamma $–symétriques. C. R. Acad. Sci. Paris Sér. I Math. 293 (1) (1981), 55–58. | MR | Zbl
Cité par Sources :