Keywords: Clifford analysis; polynomially generalized Bers–Vekua operator; Dirac operator
@article{10_5817_AM2012_5_371,
author = {Ku, Min and K\"ahler, Uwe and Cerejeiras, Paula},
title = {Solutions to a class of polynomially generalized {Bers{\textendash}Vekua} equations using {Clifford} analysis},
journal = {Archivum mathematicum},
pages = {371--385},
year = {2012},
volume = {48},
number = {5},
doi = {10.5817/AM2012-5-371},
mrnumber = {3007619},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-371/}
}
TY - JOUR AU - Ku, Min AU - Kähler, Uwe AU - Cerejeiras, Paula TI - Solutions to a class of polynomially generalized Bers–Vekua equations using Clifford analysis JO - Archivum mathematicum PY - 2012 SP - 371 EP - 385 VL - 48 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-371/ DO - 10.5817/AM2012-5-371 LA - en ID - 10_5817_AM2012_5_371 ER -
%0 Journal Article %A Ku, Min %A Kähler, Uwe %A Cerejeiras, Paula %T Solutions to a class of polynomially generalized Bers–Vekua equations using Clifford analysis %J Archivum mathematicum %D 2012 %P 371-385 %V 48 %N 5 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-371/ %R 10.5817/AM2012-5-371 %G en %F 10_5817_AM2012_5_371
Ku, Min; Kähler, Uwe; Cerejeiras, Paula. Solutions to a class of polynomially generalized Bers–Vekua equations using Clifford analysis. Archivum mathematicum, Tome 48 (2012) no. 5, pp. 371-385. doi: 10.5817/AM2012-5-371
[1] Berglez, P.: Representation of pseudoanalytic functions in the space. More progresses in analysis. Proceedings of the 5th international ISAAC congress, Catania, Italy, July 25–30, 2005 (Begehr, H., Nicolosi, F., eds.), 2008, pp. 1119–1126. | MR
[2] Berglez, P.: On the solutions of a class of iterated generalized Bers–Vekua equations in Clifford analysis. Math. Methods Appl. Sci. 33 (2010), 454–458. | MR | Zbl
[3] Bers, L.: Theory of Pseudo–analytic Functions. New York University, Institute for Mathematics and Mechanics, III, 187 p., 1953. | MR | Zbl
[4] Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis. Res. Notes Math., vol. 76, Pitman, London, 1982. | MR | Zbl
[5] Delanghe, R., Brackx, F.: Hypercomplex function theory and Hilbert modules with reproducing kernel. Proc. London Math. Soc. 37 (3) (1978), 545–576. | MR | Zbl
[6] Delanghe, R., Sommen, F., Souček, V.: Clifford algebra and spinor–valued functions. Math. Appl., vol. 53, Kluwer Acad. Publ., Dordrecht, 1992. | MR | Zbl
[7] Gürlebeck, K., Sprössig, W.: Quaternionic Analysis and Elliptic Boundary Value Problems. Birkhäuser, Basel, 1990. | MR | Zbl
[8] Min, K., Daoshun, W.: Half Dirichlet problem for matrix functions on the unit ball in Hermitian Clifford. J. Math. Anal. Appl. 374 (2011), 442–457. | DOI | MR | Zbl
[9] Min, K., Daoshun, W.: Solutions to polynomial Dirac equations on unbounded domains in Clifford analysis. Math. Methods Appl. Sci. 34 (2011), 418–427. | MR
[10] Min, K., Daoshun, W., Lin, D.: Solutions to polynomial generalized Bers–Vekua equations in Clifford analysis. Complex Anal. Oper. Theory 6 (2) (2012), 407–424. | DOI | MR
[11] Min, K., Jinyuan, D.: On integral representation of spherical $k$–regular functions in Clifford analysis. Adv. Appl. Clifford Algebras 19 (1) (2009), 83–100. | DOI | MR
[12] Min, K., Khäler, U.: Riemann boundary value problems on the half space in Clifford analysis. Math. Methods Appl. Sci. (2012), doi:10.1002/mma.2557. | MR
[13] Min, K., Khäler, U., Daoshun, W.: Riemann boundary value problems on the sphere in Clifford analysis. Adv. Appl. Clifford Algebras 22 (2) (2012), 365–390. | DOI | MR
[14] Sprössig, W.: On generalized Vekua–type problems. Adv. Appl. Clifford Algebras 11 (2001), 77–92. | DOI | MR | Zbl
[15] Vekua, I. N.: Generalized Analytic Functions. Pergamon Press, London, 1962. | MR | Zbl
[16] Yafang, G., Tao, Q., Jinyuan, D.: Structure of solutions of polynomial Dirac equations in Clifford analysis. Complex Variables Theory Appl. 49 (1) (2004), 15–21. | DOI
Cité par Sources :