Solutions to a class of polynomially generalized Bers–Vekua equations using Clifford analysis
Archivum mathematicum, Tome 48 (2012) no. 5, pp. 371-385 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper a class of polynomially generalized Vekua–type equations and of polynomially generalized Bers–Vekua equations with variable coefficients defined in a domain of Euclidean space are discussed. Using the methods of Clifford analysis, first the Fischer–type decomposition theorems for null solutions to these equations are obtained. Then we give, under some conditions, the solutions to the polynomially generalized Bers–Vekua equation with variable coefficients. Finally, we present the structure of the solutions to the inhomogeneous polynomially generalized Bers–Vekua equation.
In this paper a class of polynomially generalized Vekua–type equations and of polynomially generalized Bers–Vekua equations with variable coefficients defined in a domain of Euclidean space are discussed. Using the methods of Clifford analysis, first the Fischer–type decomposition theorems for null solutions to these equations are obtained. Then we give, under some conditions, the solutions to the polynomially generalized Bers–Vekua equation with variable coefficients. Finally, we present the structure of the solutions to the inhomogeneous polynomially generalized Bers–Vekua equation.
DOI : 10.5817/AM2012-5-371
Classification : 30G35, 32A25, 35C10
Keywords: Clifford analysis; polynomially generalized Bers–Vekua operator; Dirac operator
@article{10_5817_AM2012_5_371,
     author = {Ku, Min and K\"ahler, Uwe and Cerejeiras, Paula},
     title = {Solutions to a class of polynomially generalized {Bers{\textendash}Vekua} equations using {Clifford} analysis},
     journal = {Archivum mathematicum},
     pages = {371--385},
     year = {2012},
     volume = {48},
     number = {5},
     doi = {10.5817/AM2012-5-371},
     mrnumber = {3007619},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-371/}
}
TY  - JOUR
AU  - Ku, Min
AU  - Kähler, Uwe
AU  - Cerejeiras, Paula
TI  - Solutions to a class of polynomially generalized Bers–Vekua equations using Clifford analysis
JO  - Archivum mathematicum
PY  - 2012
SP  - 371
EP  - 385
VL  - 48
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-371/
DO  - 10.5817/AM2012-5-371
LA  - en
ID  - 10_5817_AM2012_5_371
ER  - 
%0 Journal Article
%A Ku, Min
%A Kähler, Uwe
%A Cerejeiras, Paula
%T Solutions to a class of polynomially generalized Bers–Vekua equations using Clifford analysis
%J Archivum mathematicum
%D 2012
%P 371-385
%V 48
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-371/
%R 10.5817/AM2012-5-371
%G en
%F 10_5817_AM2012_5_371
Ku, Min; Kähler, Uwe; Cerejeiras, Paula. Solutions to a class of polynomially generalized Bers–Vekua equations using Clifford analysis. Archivum mathematicum, Tome 48 (2012) no. 5, pp. 371-385. doi: 10.5817/AM2012-5-371

[1] Berglez, P.: Representation of pseudoanalytic functions in the space. More progresses in analysis. Proceedings of the 5th international ISAAC congress, Catania, Italy, July 25–30, 2005 (Begehr, H., Nicolosi, F., eds.), 2008, pp. 1119–1126. | MR

[2] Berglez, P.: On the solutions of a class of iterated generalized Bers–Vekua equations in Clifford analysis. Math. Methods Appl. Sci. 33 (2010), 454–458. | MR | Zbl

[3] Bers, L.: Theory of Pseudo–analytic Functions. New York University, Institute for Mathematics and Mechanics, III, 187 p., 1953. | MR | Zbl

[4] Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis. Res. Notes Math., vol. 76, Pitman, London, 1982. | MR | Zbl

[5] Delanghe, R., Brackx, F.: Hypercomplex function theory and Hilbert modules with reproducing kernel. Proc. London Math. Soc. 37 (3) (1978), 545–576. | MR | Zbl

[6] Delanghe, R., Sommen, F., Souček, V.: Clifford algebra and spinor–valued functions. Math. Appl., vol. 53, Kluwer Acad. Publ., Dordrecht, 1992. | MR | Zbl

[7] Gürlebeck, K., Sprössig, W.: Quaternionic Analysis and Elliptic Boundary Value Problems. Birkhäuser, Basel, 1990. | MR | Zbl

[8] Min, K., Daoshun, W.: Half Dirichlet problem for matrix functions on the unit ball in Hermitian Clifford. J. Math. Anal. Appl. 374 (2011), 442–457. | DOI | MR | Zbl

[9] Min, K., Daoshun, W.: Solutions to polynomial Dirac equations on unbounded domains in Clifford analysis. Math. Methods Appl. Sci. 34 (2011), 418–427. | MR

[10] Min, K., Daoshun, W., Lin, D.: Solutions to polynomial generalized Bers–Vekua equations in Clifford analysis. Complex Anal. Oper. Theory 6 (2) (2012), 407–424. | DOI | MR

[11] Min, K., Jinyuan, D.: On integral representation of spherical $k$–regular functions in Clifford analysis. Adv. Appl. Clifford Algebras 19 (1) (2009), 83–100. | DOI | MR

[12] Min, K., Khäler, U.: Riemann boundary value problems on the half space in Clifford analysis. Math. Methods Appl. Sci. (2012), doi:10.1002/mma.2557. | MR

[13] Min, K., Khäler, U., Daoshun, W.: Riemann boundary value problems on the sphere in Clifford analysis. Adv. Appl. Clifford Algebras 22 (2) (2012), 365–390. | DOI | MR

[14] Sprössig, W.: On generalized Vekua–type problems. Adv. Appl. Clifford Algebras 11 (2001), 77–92. | DOI | MR | Zbl

[15] Vekua, I. N.: Generalized Analytic Functions. Pergamon Press, London, 1962. | MR | Zbl

[16] Yafang, G., Tao, Q., Jinyuan, D.: Structure of solutions of polynomial Dirac equations in Clifford analysis. Complex Variables Theory Appl. 49 (1) (2004), 15–21. | DOI

Cité par Sources :