Keywords: vertex algebra; Riemann-Hilbert correspondence; D-module; KZ-equations; WZW-model
@article{10_5817_AM2012_5_353,
author = {Kriz, Igor and Xiu, Yang},
title = {Tree algebras: {An} algebraic axiomatization of intertwining vertex operators},
journal = {Archivum mathematicum},
pages = {353--370},
year = {2012},
volume = {48},
number = {5},
doi = {10.5817/AM2012-5-353},
mrnumber = {3007618},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-353/}
}
TY - JOUR AU - Kriz, Igor AU - Xiu, Yang TI - Tree algebras: An algebraic axiomatization of intertwining vertex operators JO - Archivum mathematicum PY - 2012 SP - 353 EP - 370 VL - 48 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-353/ DO - 10.5817/AM2012-5-353 LA - en ID - 10_5817_AM2012_5_353 ER -
Kriz, Igor; Xiu, Yang. Tree algebras: An algebraic axiomatization of intertwining vertex operators. Archivum mathematicum, Tome 48 (2012) no. 5, pp. 353-370. doi: 10.5817/AM2012-5-353
[1] Beilinson, A., Drinfeld, V.: Chiral algebras. Amer. Math. Soc. Colloq. Publ. 51 (2004). | MR | Zbl
[2] Borcherds, R. E.: Monstrous moonshine and monstrous Lie superalgebras. Invent. Math. 109 (1992), 405–444. | DOI | MR | Zbl
[3] Borel, A. (ed.), : Algebraic D–modules. Perspective in Math., vol. 2, Academic Press, 1987. | MR | Zbl
[4] Deligne, P.: Équations différentielles à points singuliers réguliers (French). Lecture Notes in Math., vol. 163, Springer Verlag, 1970. | MR
[5] Frenkel, I., Lepowsky, I., Meurman, A.: Vertex operator algebras and the Monster. Academic Press, Boston, MA, 1988. | MR | Zbl
[6] Grauert, H.: Analytische Faserungen über holomorph–vollständigen Räumen. Math. Ann. 135 (1958), 263–273. | DOI | MR | Zbl
[7] Griffin, P. A., Hernandez, O. F.: Structure of irreducible $SU(2)$ parafermion modules derived vie the Feigin–Fuchs construction. Internat. J. Modern Phys. A 7 (1992), 1233–1265. | DOI | MR
[8] Grothendieck, A.: Esquisse d’un programme. Geometric Galois Actions (L.Schneps, Lochak, P., eds.), London Math. Soc. Lecture Notes 242, Cambridge University Press, 1997. | MR | Zbl
[9] Hortsch, R., Kriz, I., Pultr, A.: A universal approach to vertex algebras. J. Algebra 324 (7) (2010), 1731–1753. | DOI | MR
[10] Hu, P., Kriz, I.: On modular functors and the ideal Teichmüller tower. Pure Appl. Math. Q. 1 1 (3), part 2 (2005), 665–682. | DOI | MR | Zbl
[11] Huang, Y. Z.: Two-dimensional conformal geometry and vertex operator algebras. Prog. Math. 148, Birkhäuser, Boston, 1997. | MR | Zbl
[12] Huang, Y. Z.: Generalized rationality and a “Jacobi identity" for intertwining operator algebras. Selecta Math. (N.S.) 6 (3) (2000), 22–267. | MR | Zbl
[13] Huang, Y. Z.: Differential equations, duality and intertwining operators. Comm. Contemp. Math. 7 (2005), 649–706. | DOI | MR
[14] Huang, Y. Z., Lepowsky, J.: Tensor products of modules for a vertex operator algebra and vertex tensor categories. Lie theory and geometry, Prog. Math. 123, Birkhäuser, Boston, 1994, pp. 349–383. | MR | Zbl
[15] Huang, Y. Z., Lepowsky, J.: Intertwining operator algebras and vertex tensor categories for affine Lie algebras. Duke J. Math. 99 (1) (1999), 113–134. | DOI | MR | Zbl
[16] Huang, Y.Z.: Representations of vertex operator algebras and braided finite tensor categories. Vertex algebras and related areas, Contemp. Math. 497, Amer. Math. Soc., Providence, RI, 2009, pp. 97–111. | MR
[17] Segal, G.: The definition of conformal field theory. Topology, geometry and quantum field theory, London Math. Soc. Lecture Ser. 308, Cambridge Univ. Press, Cambridge, 2004, preprint in the 1980's, pp. 421–577. | MR
Cité par Sources :