Effective chain complexes for twisted products
Archivum mathematicum, Tome 48 (2012) no. 5, pp. 313-322 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the paper weak sufficient conditions for the reduction of the chain complex of a twisted cartesian product $F \times _{\tau }B$ to a chain complex of free finitely generated abelian groups are found.
In the paper weak sufficient conditions for the reduction of the chain complex of a twisted cartesian product $F \times _{\tau }B$ to a chain complex of free finitely generated abelian groups are found.
DOI : 10.5817/AM2012-5-313
Classification : 18G35, 55U15
Keywords: twisted product; reduction; chain complex
@article{10_5817_AM2012_5_313,
     author = {Filakovsk\'y, Marek},
     title = {Effective chain complexes for twisted products},
     journal = {Archivum mathematicum},
     pages = {313--322},
     year = {2012},
     volume = {48},
     number = {5},
     doi = {10.5817/AM2012-5-313},
     mrnumber = {3007614},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-313/}
}
TY  - JOUR
AU  - Filakovský, Marek
TI  - Effective chain complexes for twisted products
JO  - Archivum mathematicum
PY  - 2012
SP  - 313
EP  - 322
VL  - 48
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-313/
DO  - 10.5817/AM2012-5-313
LA  - en
ID  - 10_5817_AM2012_5_313
ER  - 
%0 Journal Article
%A Filakovský, Marek
%T Effective chain complexes for twisted products
%J Archivum mathematicum
%D 2012
%P 313-322
%V 48
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-5-313/
%R 10.5817/AM2012-5-313
%G en
%F 10_5817_AM2012_5_313
Filakovský, Marek. Effective chain complexes for twisted products. Archivum mathematicum, Tome 48 (2012) no. 5, pp. 313-322. doi: 10.5817/AM2012-5-313

[1] Čadek, M., Krčál, M., Matoušek, J., Sergeraert, F., Vokřínek, L., Wagner, U.: Algorithmic solvability of lifting extension problem. in preparation.

[2] Čadek, M., Krčál, M., Matoušek, J., Sergeraert, F., Vokřínek, L., Wagner, U.: Computing all maps into a sphere. Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, 2012.

[3] Eilenberg, S., MacLane, S.: On the group $H(\Pi , n)$, I. Ann. of Math. (2) 58 (1953), 55–106.

[4] Krčál, M., Matoušek, J., Sergeraert, F.: Polynomial–time homology for simplicial Eilenberg–MacLane spaces. arXiv:1201.6222v1 (2012).

[5] Lambe, L., Stasheff, J.: Applications of perturbation theory to iterated fibrations. Manuscripta Math. 58 (1987), 363–376. | DOI | MR | Zbl

[6] May, J. P.: Simplicial objects in algebraic topology Chicago Lectures in Mathematics. Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992, Reprint of the 1967 original. | MR

[7] Romero, A., Sergeraert, F.: Discrete vector fields and fundamental algebraic topology. arXiv:1005.5685v1 (2010).

[8] Rubio, J.: Homologie effective des espaces de lacets itérés: un logiciel. Ph.D. thesis, Institut Fourier, Grenoble, 1991.

[9] Rubio, J., Sergeraert, F.: Constructive homological algebra and applications. Genova Summer School 2006, arXiv:1208.3816v2.

[10] Weishu, Shih: Homologie des espaces fibrés. Publ. Math., Inst. Hautes Étud. Sci. 13 (1962), 93–176. | MR

Cité par Sources :