On property (B) of higher order delay differential equations
Archivum mathematicum, Tome 48 (2012) no. 4, pp. 301-309 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we offer criteria for property (B) and additional asymptotic behavior of solutions of the $n$-th order delay differential equations \begin{equation*} \big (r(t)\big [x^{(n-1)}(t)\big ]^{\gamma }\big )^{\prime }=q(t)f\big (x(\tau (t))\big )\,. \end{equation*} Obtained results essentially use new comparison theorems, that permit to reduce the problem of the oscillation of the n-th order equation to the the oscillation of a set of certain the first order equations. So that established comparison principles essentially simplify the examination of studied equations. Both cases $\int ^{\infty } r^{-1/\gamma }(t)\,{t}=\infty $ and $\int ^{\infty } r^{-1/\gamma }(t)\,{t}\infty $ are discussed.
In this paper we offer criteria for property (B) and additional asymptotic behavior of solutions of the $n$-th order delay differential equations \begin{equation*} \big (r(t)\big [x^{(n-1)}(t)\big ]^{\gamma }\big )^{\prime }=q(t)f\big (x(\tau (t))\big )\,. \end{equation*} Obtained results essentially use new comparison theorems, that permit to reduce the problem of the oscillation of the n-th order equation to the the oscillation of a set of certain the first order equations. So that established comparison principles essentially simplify the examination of studied equations. Both cases $\int ^{\infty } r^{-1/\gamma }(t)\,{t}=\infty $ and $\int ^{\infty } r^{-1/\gamma }(t)\,{t}\infty $ are discussed.
DOI : 10.5817/AM2012-4-301
Classification : 34C10, 34K11
Keywords: $n$-th order differential equations; comparison theorem; oscillation; property (B)
@article{10_5817_AM2012_4_301,
     author = {Bacul{\'\i}kov\'a, Blanka and D\v{z}urina, Jozef},
     title = {On property {(B)} of higher order delay differential equations},
     journal = {Archivum mathematicum},
     pages = {301--309},
     year = {2012},
     volume = {48},
     number = {4},
     doi = {10.5817/AM2012-4-301},
     mrnumber = {3007612},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-301/}
}
TY  - JOUR
AU  - Baculíková, Blanka
AU  - Džurina, Jozef
TI  - On property (B) of higher order delay differential equations
JO  - Archivum mathematicum
PY  - 2012
SP  - 301
EP  - 309
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-301/
DO  - 10.5817/AM2012-4-301
LA  - en
ID  - 10_5817_AM2012_4_301
ER  - 
%0 Journal Article
%A Baculíková, Blanka
%A Džurina, Jozef
%T On property (B) of higher order delay differential equations
%J Archivum mathematicum
%D 2012
%P 301-309
%V 48
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-301/
%R 10.5817/AM2012-4-301
%G en
%F 10_5817_AM2012_4_301
Baculíková, Blanka; Džurina, Jozef. On property (B) of higher order delay differential equations. Archivum mathematicum, Tome 48 (2012) no. 4, pp. 301-309. doi: 10.5817/AM2012-4-301

[1] Agarwal, R. P., Grace, S. R., O’Regan, D.: Oscillation Theory for Difference and Functional Differential Equations. Marcel Dekker, Kluwer Academic, Dordrecht, 2000. | MR

[2] Agarwal, R. P., Grace, S. R., O’Regan, D.: Oscillation criteria for certain $n$–th order differential equations with deviating arguments. J. Math. Anal. Appl. 262 (2001), 601–622. | DOI | MR | Zbl

[3] Agarwal, R. P., Grace, S. R., O’Regan, D.: The oscillation of certain higher–order functional differential equations. Math. Comput. Modelling 37 (2003), 705–728. | DOI | MR | Zbl

[4] Baculíková, B., Džurina, J.: Oscillation of third–order neutral differential equations. Math. Comput. Modelling 52 (2010), 215–226. | DOI | MR | Zbl

[5] Baculíková, B., Džurina, J., Graef, J. R.: On the oscillation of higher order delay differential equations. Nonlinear Oscillations 15 (2012), 13–24. | MR | Zbl

[6] Bainov, D. D., Mishev, D. P.: Oscillation Theory for Nonlinear Differential Equations with Delay. Adam Hilger, Bristol, Philadelphia, New York, 1991.

[7] Džurina, J.: Comparison theorems for nonlinear ODE’s. Math. Slovaca 42 (1992), 299–315. | MR | Zbl

[8] Erbe, L. H., Kong, Q., Zhang, B.G.: Oscillation Theory for Functional Differential Equations. Marcel Dekker, New York, 1994. | MR | Zbl

[9] Grace, S. R., Agarwal, R. P., Pavani, R., Thandapani, E.: On the oscillation of certain third order nonlinear functional differential equations. Appl. Math. Comput. 202 (2008), 102–112. | DOI | MR | Zbl

[10] Grace, S. R., Lalli, B. S.: Oscillation of even order differential equations with deviating arguments. J. Math. Anal. Appl. 147 (1990), 569–579. | DOI | MR | Zbl

[11] Kiguradze, I. T., Chaturia, T. A.: Asymptotic Properties of Solutions of Nonatunomous Ordinary Differential Equations. Kluwer Acad. Publ., Dordrecht, 1993. | MR

[12] Kusano, T., Naito, M.: Comparison theorems for functional differential equations with deviating arguments. J. Math. Soc. Japan 3 (1981), 509–533. | DOI | MR | Zbl

[13] Ladde, G. S., Lakshmikantham, V., Zhang, B. G.: Oscillation Theory of Differential Equations with Deviating Arguments. Marcel Dekker, New York, 1987. | MR | Zbl

[14] Li, T., Thandapani, E.: Oscillation of solutions to odd–order nonlinear neutral functional differential equations. EJQTDE 2011 (2011), 1–12. | MR | Zbl

[15] Li, T., Zhang, Ch., Baculíková, B., Džurina, J.: On the oscillation of third order quasi–linear delay differential equations. Tatra Mt. Math. Publ. 48 (2011), 1–7. | Zbl

[16] Mahfoud, W. E.: Oscillation and asymptotic behavior of solutions of $n$–th order nonlinear delay differential equations. J. Differential Equations 24 (1977), 75–98. | DOI | MR | Zbl

[17] Philos, Ch. G.: On the existence of nonoscillatory solutions tending to zero at infinity for differential equations with positive delay. Arch. Math. (Brno) 36 (1981), 168–178. | MR

[18] Philos, Ch. G.: Oscillation and asymptotic behavior of linear retarded differential equations of arbitrary order. Tech. Report 57, Univ. Ioannina, 1981.

[19] Philos, Ch. G.: Some comparison criteria in oscillation theory. J. Austral. Math. Soc. 36 (1984), 176–186. | DOI | MR | Zbl

[20] Shreve, W. E.: Oscillation in first order nonlinear retarded argument differential equations. Proc. Amer. Math. Soc. 41 (1973), 565–568. | DOI | MR | Zbl

[21] Tang, S., Li, T., Thandapani, E.: Oscillation of higher–order half–linear neutral differential equations. Demonstratio Math. (to appear).

[22] Zhang, Ch., Li, T., Sun, B., Thandapani, E.: On the oscillation of higher–order half–linear delay differential equations. Appl. Math. Lett. 24 (2011), 1618–1621. | DOI | MR | Zbl

[23] Zhang, Q., Yan, J., Gao, L.: Oscillation behavior of even order nonlinear neutral differential equations with variable coefficients. Comput. Math. Appl. 59 (2010), 426–430. | DOI | MR | Zbl

Cité par Sources :