Keywords: prime ideals; cyclic modules; local rings; principal ideal rings
@article{10_5817_AM2012_4_291,
author = {Behboodi, M. and Moradzadeh-Dehkordi, A.},
title = {On commutative rings whose prime ideals are direct sums of cyclics},
journal = {Archivum mathematicum},
pages = {291--299},
year = {2012},
volume = {48},
number = {4},
doi = {10.5817/AM2012-4-291},
mrnumber = {3007611},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-291/}
}
TY - JOUR AU - Behboodi, M. AU - Moradzadeh-Dehkordi, A. TI - On commutative rings whose prime ideals are direct sums of cyclics JO - Archivum mathematicum PY - 2012 SP - 291 EP - 299 VL - 48 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-291/ DO - 10.5817/AM2012-4-291 LA - en ID - 10_5817_AM2012_4_291 ER -
%0 Journal Article %A Behboodi, M. %A Moradzadeh-Dehkordi, A. %T On commutative rings whose prime ideals are direct sums of cyclics %J Archivum mathematicum %D 2012 %P 291-299 %V 48 %N 4 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-291/ %R 10.5817/AM2012-4-291 %G en %F 10_5817_AM2012_4_291
Behboodi, M.; Moradzadeh-Dehkordi, A. On commutative rings whose prime ideals are direct sums of cyclics. Archivum mathematicum, Tome 48 (2012) no. 4, pp. 291-299. doi: 10.5817/AM2012-4-291
[1] Anderson, D. D.: A note on minimal prime ideals. Proc. Amer. Math. Soc. 122 (1994), 13–14. | DOI | MR | Zbl
[2] Behboodi, M., Ghorbani, A., Moradzadeh–Dehkordi, A.: Commutative Noetherian local rings whose ideals are direct sums of cyclic modules. J. Algebra 345 (2011), 257–265. | DOI | MR | Zbl
[3] Behboodi, M., Ghorbani, A., Moradzadeh–Dehkordi, A., Shojaee, S. H.: On left Köthe rings and a generalization of the Köthe–Cohen–Kaplansky theorem. Proc. Amer. Math. Soc. (to appear). | MR
[4] Behboodi, M., Shojaee, S. H.: Commutative local rings whose ideals are direct sums of cyclic modules. submitted.
[5] Cohen, I. S.: Commutative rings with restricted minimum condition. Duke Math. J. 17 (1950), 27–42. | DOI | MR | Zbl
[6] Cohen, I. S., Kaplansky, I.: Rings for which every module is a direct sum of cyclic modules. Math. Z. 54 (1951), 97–101. | DOI | MR | Zbl
[7] Kaplansky, I.: Elementary divisors and modules. Trans. Amer. Math. Soc. 66 (1949), 464–491. | DOI | MR | Zbl
[8] Köthe, G.: Verallgemeinerte abelsche gruppen mit hyperkomplexen operatorenring. Math. Z. 39 (1935), 31–44. | DOI | MR
[9] Warfield, R. B. Jr., : A Krull–Schmidt theorem for infinite sums of modules. Proc. Amer. Math. Soc. 22 (1969), 460–465. | DOI | MR | Zbl
Cité par Sources :