On commutative rings whose prime ideals are direct sums of cyclics
Archivum mathematicum, Tome 48 (2012) no. 4, pp. 291-299
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we study commutative rings $R$ whose prime ideals are direct sums of cyclic modules. In the case $R$ is a finite direct product of commutative local rings, the structure of such rings is completely described. In particular, it is shown that for a local ring $(R, \mathcal{M})$, the following statements are equivalent: (1) Every prime ideal of $R$ is a direct sum of cyclic $R$-modules; (2) ${\mathcal{M}}=\bigoplus _{\lambda \in \Lambda }Rw_{\lambda }$ where $\Lambda $ is an index set and $R/{\operatorname{Ann}}(w_{\lambda })$ is a principal ideal ring for each $\lambda \in \Lambda $; (3) Every prime ideal of $R$ is a direct sum of at most $|\Lambda |$ cyclic $R$-modules where $\Lambda $ is an index set and ${\mathcal{M}}=\bigoplus _{\lambda \in \Lambda }Rw_{\lambda }$; and (4) Every prime ideal of $R$ is a summand of a direct sum of cyclic $R$-modules. Also, we establish a theorem which state that, to check whether every prime ideal in a Noetherian local ring $(R, \mathcal{M})$ is a direct sum of (at most $n$) principal ideals, it suffices to test only the maximal ideal $\mathcal{M}$.
DOI :
10.5817/AM2012-4-291
Classification :
13C05, 13E05, 13E10, 13F10, 13H99
Keywords: prime ideals; cyclic modules; local rings; principal ideal rings
Keywords: prime ideals; cyclic modules; local rings; principal ideal rings
@article{10_5817_AM2012_4_291,
author = {Behboodi, M. and Moradzadeh-Dehkordi, A.},
title = {On commutative rings whose prime ideals are direct sums of cyclics},
journal = {Archivum mathematicum},
pages = {291--299},
publisher = {mathdoc},
volume = {48},
number = {4},
year = {2012},
doi = {10.5817/AM2012-4-291},
mrnumber = {3007611},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-291/}
}
TY - JOUR AU - Behboodi, M. AU - Moradzadeh-Dehkordi, A. TI - On commutative rings whose prime ideals are direct sums of cyclics JO - Archivum mathematicum PY - 2012 SP - 291 EP - 299 VL - 48 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-291/ DO - 10.5817/AM2012-4-291 LA - en ID - 10_5817_AM2012_4_291 ER -
%0 Journal Article %A Behboodi, M. %A Moradzadeh-Dehkordi, A. %T On commutative rings whose prime ideals are direct sums of cyclics %J Archivum mathematicum %D 2012 %P 291-299 %V 48 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-291/ %R 10.5817/AM2012-4-291 %G en %F 10_5817_AM2012_4_291
Behboodi, M.; Moradzadeh-Dehkordi, A. On commutative rings whose prime ideals are direct sums of cyclics. Archivum mathematicum, Tome 48 (2012) no. 4, pp. 291-299. doi: 10.5817/AM2012-4-291
Cité par Sources :