On commutative rings whose prime ideals are direct sums of cyclics
Archivum mathematicum, Tome 48 (2012) no. 4, pp. 291-299 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study commutative rings $R$ whose prime ideals are direct sums of cyclic modules. In the case $R$ is a finite direct product of commutative local rings, the structure of such rings is completely described. In particular, it is shown that for a local ring $(R, \mathcal{M})$, the following statements are equivalent: (1) Every prime ideal of $R$ is a direct sum of cyclic $R$-modules; (2) ${\mathcal{M}}=\bigoplus _{\lambda \in \Lambda }Rw_{\lambda }$ where $\Lambda $ is an index set and $R/{\operatorname{Ann}}(w_{\lambda })$ is a principal ideal ring for each $\lambda \in \Lambda $; (3) Every prime ideal of $R$ is a direct sum of at most $|\Lambda |$ cyclic $R$-modules where $\Lambda $ is an index set and ${\mathcal{M}}=\bigoplus _{\lambda \in \Lambda }Rw_{\lambda }$; and (4) Every prime ideal of $R$ is a summand of a direct sum of cyclic $R$-modules. Also, we establish a theorem which state that, to check whether every prime ideal in a Noetherian local ring $(R, \mathcal{M})$ is a direct sum of (at most $n$) principal ideals, it suffices to test only the maximal ideal $\mathcal{M}$.
In this paper we study commutative rings $R$ whose prime ideals are direct sums of cyclic modules. In the case $R$ is a finite direct product of commutative local rings, the structure of such rings is completely described. In particular, it is shown that for a local ring $(R, \mathcal{M})$, the following statements are equivalent: (1) Every prime ideal of $R$ is a direct sum of cyclic $R$-modules; (2) ${\mathcal{M}}=\bigoplus _{\lambda \in \Lambda }Rw_{\lambda }$ where $\Lambda $ is an index set and $R/{\operatorname{Ann}}(w_{\lambda })$ is a principal ideal ring for each $\lambda \in \Lambda $; (3) Every prime ideal of $R$ is a direct sum of at most $|\Lambda |$ cyclic $R$-modules where $\Lambda $ is an index set and ${\mathcal{M}}=\bigoplus _{\lambda \in \Lambda }Rw_{\lambda }$; and (4) Every prime ideal of $R$ is a summand of a direct sum of cyclic $R$-modules. Also, we establish a theorem which state that, to check whether every prime ideal in a Noetherian local ring $(R, \mathcal{M})$ is a direct sum of (at most $n$) principal ideals, it suffices to test only the maximal ideal $\mathcal{M}$.
DOI : 10.5817/AM2012-4-291
Classification : 13C05, 13E05, 13E10, 13F10, 13H99
Keywords: prime ideals; cyclic modules; local rings; principal ideal rings
@article{10_5817_AM2012_4_291,
     author = {Behboodi, M. and Moradzadeh-Dehkordi, A.},
     title = {On commutative rings whose prime ideals are direct sums of cyclics},
     journal = {Archivum mathematicum},
     pages = {291--299},
     year = {2012},
     volume = {48},
     number = {4},
     doi = {10.5817/AM2012-4-291},
     mrnumber = {3007611},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-291/}
}
TY  - JOUR
AU  - Behboodi, M.
AU  - Moradzadeh-Dehkordi, A.
TI  - On commutative rings whose prime ideals are direct sums of cyclics
JO  - Archivum mathematicum
PY  - 2012
SP  - 291
EP  - 299
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-291/
DO  - 10.5817/AM2012-4-291
LA  - en
ID  - 10_5817_AM2012_4_291
ER  - 
%0 Journal Article
%A Behboodi, M.
%A Moradzadeh-Dehkordi, A.
%T On commutative rings whose prime ideals are direct sums of cyclics
%J Archivum mathematicum
%D 2012
%P 291-299
%V 48
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-291/
%R 10.5817/AM2012-4-291
%G en
%F 10_5817_AM2012_4_291
Behboodi, M.; Moradzadeh-Dehkordi, A. On commutative rings whose prime ideals are direct sums of cyclics. Archivum mathematicum, Tome 48 (2012) no. 4, pp. 291-299. doi: 10.5817/AM2012-4-291

[1] Anderson, D. D.: A note on minimal prime ideals. Proc. Amer. Math. Soc. 122 (1994), 13–14. | DOI | MR | Zbl

[2] Behboodi, M., Ghorbani, A., Moradzadeh–Dehkordi, A.: Commutative Noetherian local rings whose ideals are direct sums of cyclic modules. J. Algebra 345 (2011), 257–265. | DOI | MR | Zbl

[3] Behboodi, M., Ghorbani, A., Moradzadeh–Dehkordi, A., Shojaee, S. H.: On left Köthe rings and a generalization of the Köthe–Cohen–Kaplansky theorem. Proc. Amer. Math. Soc. (to appear). | MR

[4] Behboodi, M., Shojaee, S. H.: Commutative local rings whose ideals are direct sums of cyclic modules. submitted.

[5] Cohen, I. S.: Commutative rings with restricted minimum condition. Duke Math. J. 17 (1950), 27–42. | DOI | MR | Zbl

[6] Cohen, I. S., Kaplansky, I.: Rings for which every module is a direct sum of cyclic modules. Math. Z. 54 (1951), 97–101. | DOI | MR | Zbl

[7] Kaplansky, I.: Elementary divisors and modules. Trans. Amer. Math. Soc. 66 (1949), 464–491. | DOI | MR | Zbl

[8] Köthe, G.: Verallgemeinerte abelsche gruppen mit hyperkomplexen operatorenring. Math. Z. 39 (1935), 31–44. | DOI | MR

[9] Warfield, R. B. Jr., : A Krull–Schmidt theorem for infinite sums of modules. Proc. Amer. Math. Soc. 22 (1969), 460–465. | DOI | MR | Zbl

Cité par Sources :