Rarita-Schwinger type operators on spheres and real projective space
Archivum mathematicum, Tome 48 (2012) no. 4, pp. 271-289 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we deal with Rarita-Schwinger type operators on spheres and real projective space. First we define the spherical Rarita-Schwinger type operators and construct their fundamental solutions. Then we establish that the projection operators appearing in the spherical Rarita-Schwinger type operators and the spherical Rarita-Schwinger type equations are conformally invariant under the Cayley transformation. Further, we obtain some basic integral formulas related to the spherical Rarita-Schwinger type operators. Second, we define the Rarita-Schwinger type operators on the real projective space and construct their kernels and Cauchy integral formulas.
In this paper we deal with Rarita-Schwinger type operators on spheres and real projective space. First we define the spherical Rarita-Schwinger type operators and construct their fundamental solutions. Then we establish that the projection operators appearing in the spherical Rarita-Schwinger type operators and the spherical Rarita-Schwinger type equations are conformally invariant under the Cayley transformation. Further, we obtain some basic integral formulas related to the spherical Rarita-Schwinger type operators. Second, we define the Rarita-Schwinger type operators on the real projective space and construct their kernels and Cauchy integral formulas.
DOI : 10.5817/AM2012-4-271
Classification : 30G35, 53C27
Keywords: spherical Rarita-Schwinger type operators; Cayley transformation; real projective space; Almansi-Fischer decomposition; Iwasawa decomposition
@article{10_5817_AM2012_4_271,
     author = {Li, Junxia and Ryan, John and Vanegas, Carmen J.},
     title = {Rarita-Schwinger type operators on spheres and real projective space},
     journal = {Archivum mathematicum},
     pages = {271--289},
     year = {2012},
     volume = {48},
     number = {4},
     doi = {10.5817/AM2012-4-271},
     mrnumber = {3007610},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-271/}
}
TY  - JOUR
AU  - Li, Junxia
AU  - Ryan, John
AU  - Vanegas, Carmen J.
TI  - Rarita-Schwinger type operators on spheres and real projective space
JO  - Archivum mathematicum
PY  - 2012
SP  - 271
EP  - 289
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-271/
DO  - 10.5817/AM2012-4-271
LA  - en
ID  - 10_5817_AM2012_4_271
ER  - 
%0 Journal Article
%A Li, Junxia
%A Ryan, John
%A Vanegas, Carmen J.
%T Rarita-Schwinger type operators on spheres and real projective space
%J Archivum mathematicum
%D 2012
%P 271-289
%V 48
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-271/
%R 10.5817/AM2012-4-271
%G en
%F 10_5817_AM2012_4_271
Li, Junxia; Ryan, John; Vanegas, Carmen J. Rarita-Schwinger type operators on spheres and real projective space. Archivum mathematicum, Tome 48 (2012) no. 4, pp. 271-289. doi: 10.5817/AM2012-4-271

[1] Balinsky, A., Ryan, J.: Some sharp $L^2$ inequalities for Dirac type operators. SIGMA, Symmetry Integrability Geom. Methods Appl. (2007), 10, paper 114, electronic only. | MR | Zbl

[2] Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman, London, 1982. | MR | Zbl

[3] Bureš, J., Sommen, F., Souček, V., Van Lancker, P.: Rarita-Schwinger type operators in Clifford analysis. J. Funct. Anal. 185 (2) (2001), 425–455. | DOI | MR | Zbl

[4] Bureš, J., Sommen, F., Souček, V., Van Lancker, P.: Symmetric analogues of Rarita-Schwinger equations. Ann. Global Anal. Geom. 21 (2002), 215–240. | DOI | MR | Zbl

[5] Cnops, J., Malonek, H.: An introduction to Clifford analysis. Textos Mat. Sér. B (1995), vi+64. | MR | Zbl

[6] Dunkl, C., Li, J., Ryan, J., Van Lancker, P.: Some Rarita-Schwinger operators. submitted 2011, | arXiv

[7] Krausshar, R. S., Ryan, J.: Conformally flat spin manifolds, Dirac operators and automorphic forms. J. Math. Anal. Appl. 325 (2007), 359–376. | DOI | MR | Zbl

[8] Liu, H., Ryan, J.: Clifford analysis techniques for spherical PDE. J. Fourier Anal. Appl. 8 (6) (2002), 535–563. | DOI | MR | Zbl

[9] Porteous, I.: Clifford Algebra and the Classical Groups. Cambridge University Press, Cambridge, 1995. | MR

[10] Ryan, J.: Iterated Dirac operators in $C^n$. Z. Anal. Anwendungen 9 (1990), 385–401. | MR

[11] Ryan, J.: Clifford analysis on spheres and hyperbolae. Math. Methods Appl. Sci. 20 (18) (1997), 1617–1624. | DOI | MR | Zbl

[12] Ryan, J.: Dirac operators on spheres and hyperbolae. Bol. Soc. Mat. Mexicana (3) 3 (2) (1997), 255–270. | MR | Zbl

[13] Van Lancker, P.: Clifford Analysis on the Sphere. Clifford Algebra and their Application in Mathematical Physics (Aachen, 1996), Fund. Theories Phys., 94, Kluwer Acad. Publ., Dordrecht, 1998, pp. 201–215. | MR | Zbl

[14] Van Lancker, P.: Higher Spin Fields on Smooth Domains. Clifford Analysis and Its Applications (Brackx, F., Chisholm, J. S. R., Souček, V., eds.), Kluwer, Dordrecht, 2001, pp. 389–398. | MR | Zbl

[15] Van Lancker, P.: Rarita-Schwinger fields in the half space. Complex Var. Elliptic Equ. 51 (2006), 563–579. | DOI | MR | Zbl

Cité par Sources :