Keywords: spherical Rarita-Schwinger type operators; Cayley transformation; real projective space; Almansi-Fischer decomposition; Iwasawa decomposition
@article{10_5817_AM2012_4_271,
author = {Li, Junxia and Ryan, John and Vanegas, Carmen J.},
title = {Rarita-Schwinger type operators on spheres and real projective space},
journal = {Archivum mathematicum},
pages = {271--289},
year = {2012},
volume = {48},
number = {4},
doi = {10.5817/AM2012-4-271},
mrnumber = {3007610},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-271/}
}
TY - JOUR AU - Li, Junxia AU - Ryan, John AU - Vanegas, Carmen J. TI - Rarita-Schwinger type operators on spheres and real projective space JO - Archivum mathematicum PY - 2012 SP - 271 EP - 289 VL - 48 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-271/ DO - 10.5817/AM2012-4-271 LA - en ID - 10_5817_AM2012_4_271 ER -
%0 Journal Article %A Li, Junxia %A Ryan, John %A Vanegas, Carmen J. %T Rarita-Schwinger type operators on spheres and real projective space %J Archivum mathematicum %D 2012 %P 271-289 %V 48 %N 4 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-271/ %R 10.5817/AM2012-4-271 %G en %F 10_5817_AM2012_4_271
Li, Junxia; Ryan, John; Vanegas, Carmen J. Rarita-Schwinger type operators on spheres and real projective space. Archivum mathematicum, Tome 48 (2012) no. 4, pp. 271-289. doi: 10.5817/AM2012-4-271
[1] Balinsky, A., Ryan, J.: Some sharp $L^2$ inequalities for Dirac type operators. SIGMA, Symmetry Integrability Geom. Methods Appl. (2007), 10, paper 114, electronic only. | MR | Zbl
[2] Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman, London, 1982. | MR | Zbl
[3] Bureš, J., Sommen, F., Souček, V., Van Lancker, P.: Rarita-Schwinger type operators in Clifford analysis. J. Funct. Anal. 185 (2) (2001), 425–455. | DOI | MR | Zbl
[4] Bureš, J., Sommen, F., Souček, V., Van Lancker, P.: Symmetric analogues of Rarita-Schwinger equations. Ann. Global Anal. Geom. 21 (2002), 215–240. | DOI | MR | Zbl
[5] Cnops, J., Malonek, H.: An introduction to Clifford analysis. Textos Mat. Sér. B (1995), vi+64. | MR | Zbl
[6] Dunkl, C., Li, J., Ryan, J., Van Lancker, P.: Some Rarita-Schwinger operators. submitted 2011, | arXiv
[7] Krausshar, R. S., Ryan, J.: Conformally flat spin manifolds, Dirac operators and automorphic forms. J. Math. Anal. Appl. 325 (2007), 359–376. | DOI | MR | Zbl
[8] Liu, H., Ryan, J.: Clifford analysis techniques for spherical PDE. J. Fourier Anal. Appl. 8 (6) (2002), 535–563. | DOI | MR | Zbl
[9] Porteous, I.: Clifford Algebra and the Classical Groups. Cambridge University Press, Cambridge, 1995. | MR
[10] Ryan, J.: Iterated Dirac operators in $C^n$. Z. Anal. Anwendungen 9 (1990), 385–401. | MR
[11] Ryan, J.: Clifford analysis on spheres and hyperbolae. Math. Methods Appl. Sci. 20 (18) (1997), 1617–1624. | DOI | MR | Zbl
[12] Ryan, J.: Dirac operators on spheres and hyperbolae. Bol. Soc. Mat. Mexicana (3) 3 (2) (1997), 255–270. | MR | Zbl
[13] Van Lancker, P.: Clifford Analysis on the Sphere. Clifford Algebra and their Application in Mathematical Physics (Aachen, 1996), Fund. Theories Phys., 94, Kluwer Acad. Publ., Dordrecht, 1998, pp. 201–215. | MR | Zbl
[14] Van Lancker, P.: Higher Spin Fields on Smooth Domains. Clifford Analysis and Its Applications (Brackx, F., Chisholm, J. S. R., Souček, V., eds.), Kluwer, Dordrecht, 2001, pp. 389–398. | MR | Zbl
[15] Van Lancker, P.: Rarita-Schwinger fields in the half space. Complex Var. Elliptic Equ. 51 (2006), 563–579. | DOI | MR | Zbl
Cité par Sources :