Rarita-Schwinger type operators on spheres and real projective space
Archivum mathematicum, Tome 48 (2012) no. 4, pp. 271-289.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we deal with Rarita-Schwinger type operators on spheres and real projective space. First we define the spherical Rarita-Schwinger type operators and construct their fundamental solutions. Then we establish that the projection operators appearing in the spherical Rarita-Schwinger type operators and the spherical Rarita-Schwinger type equations are conformally invariant under the Cayley transformation. Further, we obtain some basic integral formulas related to the spherical Rarita-Schwinger type operators. Second, we define the Rarita-Schwinger type operators on the real projective space and construct their kernels and Cauchy integral formulas.
DOI : 10.5817/AM2012-4-271
Classification : 30G35, 53C27
Keywords: spherical Rarita-Schwinger type operators; Cayley transformation; real projective space; Almansi-Fischer decomposition; Iwasawa decomposition
@article{10_5817_AM2012_4_271,
     author = {Li, Junxia and Ryan, John and Vanegas, Carmen J.},
     title = {Rarita-Schwinger type operators on spheres and real projective space},
     journal = {Archivum mathematicum},
     pages = {271--289},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2012},
     doi = {10.5817/AM2012-4-271},
     mrnumber = {3007610},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-271/}
}
TY  - JOUR
AU  - Li, Junxia
AU  - Ryan, John
AU  - Vanegas, Carmen J.
TI  - Rarita-Schwinger type operators on spheres and real projective space
JO  - Archivum mathematicum
PY  - 2012
SP  - 271
EP  - 289
VL  - 48
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-271/
DO  - 10.5817/AM2012-4-271
LA  - en
ID  - 10_5817_AM2012_4_271
ER  - 
%0 Journal Article
%A Li, Junxia
%A Ryan, John
%A Vanegas, Carmen J.
%T Rarita-Schwinger type operators on spheres and real projective space
%J Archivum mathematicum
%D 2012
%P 271-289
%V 48
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-271/
%R 10.5817/AM2012-4-271
%G en
%F 10_5817_AM2012_4_271
Li, Junxia; Ryan, John; Vanegas, Carmen J. Rarita-Schwinger type operators on spheres and real projective space. Archivum mathematicum, Tome 48 (2012) no. 4, pp. 271-289. doi : 10.5817/AM2012-4-271. http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-271/

Cité par Sources :