Existence and positivity of solutions for a nonlinear periodic differential equation
Archivum mathematicum, Tome 48 (2012) no. 4, pp. 261-270.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the existence and positivity of solutions of a highly nonlinear periodic differential equation. In the process we convert the differential equation into an equivalent integral equation after which appropriate mappings are constructed. We then employ a modification of Krasnoselskii’s fixed point theorem introduced by T. A. Burton ([4], Theorem 3) to show the existence and positivity of solutions of the equation.
DOI : 10.5817/AM2012-4-261
Classification : 34A12, 34A37, 39A05
Keywords: fixed point; large contraction; periodic solution; positive solution
@article{10_5817_AM2012_4_261,
     author = {Yankson, Ernest},
     title = {Existence and positivity of solutions for a nonlinear periodic differential equation},
     journal = {Archivum mathematicum},
     pages = {261--270},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2012},
     doi = {10.5817/AM2012-4-261},
     mrnumber = {3007609},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-261/}
}
TY  - JOUR
AU  - Yankson, Ernest
TI  - Existence and positivity of solutions for a nonlinear periodic differential equation
JO  - Archivum mathematicum
PY  - 2012
SP  - 261
EP  - 270
VL  - 48
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-261/
DO  - 10.5817/AM2012-4-261
LA  - en
ID  - 10_5817_AM2012_4_261
ER  - 
%0 Journal Article
%A Yankson, Ernest
%T Existence and positivity of solutions for a nonlinear periodic differential equation
%J Archivum mathematicum
%D 2012
%P 261-270
%V 48
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-261/
%R 10.5817/AM2012-4-261
%G en
%F 10_5817_AM2012_4_261
Yankson, Ernest. Existence and positivity of solutions for a nonlinear periodic differential equation. Archivum mathematicum, Tome 48 (2012) no. 4, pp. 261-270. doi : 10.5817/AM2012-4-261. http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-261/

Cité par Sources :