Existence and positivity of solutions for a nonlinear periodic differential equation
Archivum mathematicum, Tome 48 (2012) no. 4, pp. 261-270 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the existence and positivity of solutions of a highly nonlinear periodic differential equation. In the process we convert the differential equation into an equivalent integral equation after which appropriate mappings are constructed. We then employ a modification of Krasnoselskii’s fixed point theorem introduced by T. A. Burton ([4], Theorem 3) to show the existence and positivity of solutions of the equation.
We study the existence and positivity of solutions of a highly nonlinear periodic differential equation. In the process we convert the differential equation into an equivalent integral equation after which appropriate mappings are constructed. We then employ a modification of Krasnoselskii’s fixed point theorem introduced by T. A. Burton ([4], Theorem 3) to show the existence and positivity of solutions of the equation.
DOI : 10.5817/AM2012-4-261
Classification : 34A12, 34A37, 39A05
Keywords: fixed point; large contraction; periodic solution; positive solution
@article{10_5817_AM2012_4_261,
     author = {Yankson, Ernest},
     title = {Existence and positivity of solutions for a nonlinear periodic differential equation},
     journal = {Archivum mathematicum},
     pages = {261--270},
     year = {2012},
     volume = {48},
     number = {4},
     doi = {10.5817/AM2012-4-261},
     mrnumber = {3007609},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-261/}
}
TY  - JOUR
AU  - Yankson, Ernest
TI  - Existence and positivity of solutions for a nonlinear periodic differential equation
JO  - Archivum mathematicum
PY  - 2012
SP  - 261
EP  - 270
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-261/
DO  - 10.5817/AM2012-4-261
LA  - en
ID  - 10_5817_AM2012_4_261
ER  - 
%0 Journal Article
%A Yankson, Ernest
%T Existence and positivity of solutions for a nonlinear periodic differential equation
%J Archivum mathematicum
%D 2012
%P 261-270
%V 48
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-261/
%R 10.5817/AM2012-4-261
%G en
%F 10_5817_AM2012_4_261
Yankson, Ernest. Existence and positivity of solutions for a nonlinear periodic differential equation. Archivum mathematicum, Tome 48 (2012) no. 4, pp. 261-270. doi: 10.5817/AM2012-4-261

[1] Burton, T. A.: Integral equations, implicit relations and fixed points. Proc. Amer. Math. Soc. 124 (1996), 2383–2390. | DOI | MR

[2] Burton, T. A.: A fixed point theorem of Krasnoselskii. Appl. Math. Lett. 11 (1998), 85–88. | DOI | MR | Zbl

[3] Burton, T. A.: Liapunov functionals, fixed points and stability by Krasnoselskii’s theorem. Nonlinear Stud. 9 (2002), 181–190. | MR | Zbl

[4] Burton, T.A.: Stability by fixed point theory for functional differential equations. Mineola, NY, Dover Publications, Inc., 2006. | MR | Zbl

[5] Chen, F. D.: Positive periodic solutions of neutral Lotka-Volterra system with feedback control. Appl. Math. Comput. 162 (3) (2005), 1279–1302. | DOI | MR | Zbl

[6] Chen, F. D., Shi, J. L.: Periodicity in a nonlinear predator-prey system with state dependent delays. Acta Math. Appl. Sinica (English Ser.) 21 (1) (2005), 49–60. | DOI | MR | Zbl

[7] Curtain, R. F., Pritchard, A. J.: Functional analysis in modern applied mathematics. Mathematics in Science and Engineering, Vol. 132. London–New York, Academic Press, 1977. | MR | Zbl

[8] Elkadeky, W. K., El-Sayed, A. M.: Caratheodory theorem for a nonlocal problem of the differential equation $x^{\prime }=f(t,x^{\prime })$. Alex. J. Math. 1 (2) (2010), 8–14.

[9] Fan, M., Wang, K.: Global periodic solutions of a generalized $n$-species Gilpin–Ayalacompetition model. Comput. Math. Appl. 40 (10–11) (2000), 1141–1151. | DOI | MR

[10] Hafsia, D., Ahcene, D.: Periodic solutions for nonlinear differential equation with functional delay. Georgian Math. J. 15 (4) (2008), 635–642. | MR | Zbl

[11] Hafsia, D., Ahcene, D.: Existence of periodic solutions for neutral nonlinear differential equations with variable delay. Electron. J. Differential Equations 127 (2010), 1–8. | MR | Zbl

[12] Kaufmann, E. R.: A nonlinear neutral periodic differential equation. Electron. J. Differential Equations 88 (2010), 1–8. | MR | Zbl

[13] Kun, L. Y.: Periodic solution of a periodic neutral delay equation. J. Math. Anal. Appl. 214 (1997), 11–21. | DOI | MR | Zbl

[14] Raffoul, Y. N.: Periodic solutions for neutral nonlinear differential equations with functional delays. Electron. J. Differential Equations 102 (2003), 1–7. | MR

[15] Raffoul, Y. N.: Positive periodic solutions in neutral nonlinear differential equations. Electron. J. Qual. Theory Differ. Equ. 16 (2007), 1–10. | MR | Zbl

Cité par Sources :