Partial dcpo’s and some applications
Archivum mathematicum, Tome 48 (2012) no. 4, pp. 243-260 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce partial dcpo’s and show their some applications. A partial dcpo is a poset associated with a designated collection of directed subsets. We prove that (i) the dcpo-completion of every partial dcpo exists; (ii) for certain spaces $X$, the corresponding partial dcpo’s of continuous real valued functions on $X$ are continuous partial dcpos; (iii) if a space $X$ is Hausdorff compact, the lattice of all S-lower semicontinuous functions on $X$ is the dcpo-completion of that of continuous real valued functions on the space; (iv) a topological space has an injective hull iff it is homeomorphic to the pre-Scott space of a continuous partial dcpo whose way-below relation satisfies the interpolation property.
We introduce partial dcpo’s and show their some applications. A partial dcpo is a poset associated with a designated collection of directed subsets. We prove that (i) the dcpo-completion of every partial dcpo exists; (ii) for certain spaces $X$, the corresponding partial dcpo’s of continuous real valued functions on $X$ are continuous partial dcpos; (iii) if a space $X$ is Hausdorff compact, the lattice of all S-lower semicontinuous functions on $X$ is the dcpo-completion of that of continuous real valued functions on the space; (iv) a topological space has an injective hull iff it is homeomorphic to the pre-Scott space of a continuous partial dcpo whose way-below relation satisfies the interpolation property.
DOI : 10.5817/AM2012-4-243
Classification : 06B23, 06B35, 06F30, 54A05, 54C05, 54C30
Keywords: directed complete poset; Scott topology; dcpo-completion; partial dcpo; C-space; lattice of continuous functions; lower semicontinuous functions; injective hull
@article{10_5817_AM2012_4_243,
     author = {Dongsheng, Zhao},
     title = {Partial dcpo{\textquoteright}s and some applications},
     journal = {Archivum mathematicum},
     pages = {243--260},
     year = {2012},
     volume = {48},
     number = {4},
     doi = {10.5817/AM2012-4-243},
     mrnumber = {3007608},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-243/}
}
TY  - JOUR
AU  - Dongsheng, Zhao
TI  - Partial dcpo’s and some applications
JO  - Archivum mathematicum
PY  - 2012
SP  - 243
EP  - 260
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-243/
DO  - 10.5817/AM2012-4-243
LA  - en
ID  - 10_5817_AM2012_4_243
ER  - 
%0 Journal Article
%A Dongsheng, Zhao
%T Partial dcpo’s and some applications
%J Archivum mathematicum
%D 2012
%P 243-260
%V 48
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-4-243/
%R 10.5817/AM2012-4-243
%G en
%F 10_5817_AM2012_4_243
Dongsheng, Zhao. Partial dcpo’s and some applications. Archivum mathematicum, Tome 48 (2012) no. 4, pp. 243-260. doi: 10.5817/AM2012-4-243

[1] Banaschewski, B.: Essential extensions of $T_0$–spaces. General Topology and Appl. 7 (1977), 233–246. | MR | Zbl

[2] Bourbaki, N.: General Topology. vol. IX, Paris, 1948.

[3] Edalat, A., Heckmann, R.: A computational model for metric spaces. Theoret. Comput. Sci. 193 (1998), 53–73. | DOI | MR | Zbl

[4] Engelking, R.: General Topology. Polish Scientific Publisher, Warszawa, 1977. | MR | Zbl

[5] Erné, M.: The ABC of order and topology. Category Theory at Work (Herlich, H., Porst, H.-E., eds.), Heldermann Verlag, Berlin, 1991, pp. 57–83. | MR | Zbl

[6] Erné, M.: Minimal bases, ideal extensions, and basic dualities. Topology Proc. 29 (2005), 445–489. | MR | Zbl

[7] Erné, M.: Algebraic models for T1-spaces. Topology Appl. 158 (7) (2011), 945–967. | MR

[8] Ershov, Yu. L.: Computable functionals of finite types. Algebra and Logic 11 (4) (1972), 367–437. | MR | Zbl

[9] Ershov, Yu. L.: On d–spaces. Theoret. Comput. Sci. 224 (1999), 59–72. | DOI | MR | Zbl

[10] Gierz, G., al., et: Continuous lattices and domains. Encyclopedia Math. Appl., vol. 93, Cambridge University Press, 2003. | MR | Zbl

[11] Hoffmann, R.: Continuous posets, prime spectra of completely distributive lattices and Hausdorff compactifications. Continuous Lattices, Lecture Notes in Math. 159 - 208., vol. 871, Springer–Verlag, 1981, pp. 159–208.

[12] Johnstone, P.: Scott is not always sober. Continuous Lattices, Lecture Notes in Math., vol. 871, Springer–Verlag, 1981, pp. 282–283. | Zbl

[13] Johnstone, P.: Stone spaces. Cambridge University Press, 1982. | MR | Zbl

[14] Jung, A., Moshier, M. A., Vickers, S.: Presenting dcpos and dcpo algebras. Proceedings of the 24th Annual Conference on foundation of programming semantics, Electronic Notes in Theoretical Computer Science, vol. 218, 2008, pp. 209–229.

[15] Kamimura, T., Tang, A.: Total objects of domains. Theoret. Comput. Sci. 34 (1984), 275–288. | DOI | MR | Zbl

[16] Keimel, K., Lawson, J. D.: D–completions and the d–topology. Ann. Pure Appl. Logic 159 (3) (2009), 292–306. | DOI | MR | Zbl

[17] Lawson, J. D.: The duality of continuous posets. Houston J. Math. 5 (1979), 357–394. | MR | Zbl

[18] Lawson, J. D.: Spaces of maximal points. Math. Structures Comput. Sci. 7 (5) (1997), 543–555. | DOI | MR | Zbl

[19] Liang, L., Klause, K.: Order environment of topological spaces. Acta Math. Sinica 20 (5) (2004), 943–948. | DOI

[20] Martin, K.: Ideal models of spaces. Theoret. Comput. Sci. 305 (2003), 277–297. | DOI | MR | Zbl

[21] Martin, K.: The regular spaces with countably based models. Theoret. Comput. Sci. 305 (2003), 299–310. | DOI | MR | Zbl

[22] Martin, K.: Topological games in domain theory. Topology Appl. 129 (2) (2003), 177–186. | DOI | MR | Zbl

[23] Scott, D. S.: Continuous lattices. Toposes, Algebraic Geometry and Logic, Lecture Notes in Math., vol. 274, Springer–Verlag, 1972, pp. 97–136. | MR | Zbl

[24] Tong, H.: Some characterizations of normal and perfectly normal spaces. Duke Math. J. 19 (1952), 289–292. | DOI | MR | Zbl

[25] Waszkiewicz, P.: How do domains model topologies. Electron. Notes Theor. Comput. Sci. 83 (2004), 1–18.

[26] Wyler, O.: Dedekind complete posets and Scott topologies. Continuous Lattices, Lecture Notes in Math., vol. 871, Springer–Verlag, 1981, pp. 384–389. | Zbl

[27] Zhao, D.: Poset models of topological spaces. Proceeding of International Conference on Quantitative Logic and Quantification of Software, Global–Link Publisher, 2009, pp. 229–238.

[28] Zhao, D., Fan, T.: dcpo-completion of posets. Theoret. Comput. Sci. 411 (2010), 2167–2173. | DOI | MR | Zbl

Cité par Sources :