Keywords: Dirac structure; prolongations of vector fields; prolongations of differential forms; Dirac structure of higher order; natural transformations
@article{10_5817_AM2012_3_233,
author = {Wamba, P. M. Kouotchop and Ntyam, A. and Kamga, J. Wouafo},
title = {Some properties of tangent {Dirac} structures of higher order},
journal = {Archivum mathematicum},
pages = {233--241},
year = {2012},
volume = {48},
number = {3},
doi = {10.5817/AM2012-3-233},
mrnumber = {2995874},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-3-233/}
}
TY - JOUR AU - Wamba, P. M. Kouotchop AU - Ntyam, A. AU - Kamga, J. Wouafo TI - Some properties of tangent Dirac structures of higher order JO - Archivum mathematicum PY - 2012 SP - 233 EP - 241 VL - 48 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-3-233/ DO - 10.5817/AM2012-3-233 LA - en ID - 10_5817_AM2012_3_233 ER -
%0 Journal Article %A Wamba, P. M. Kouotchop %A Ntyam, A. %A Kamga, J. Wouafo %T Some properties of tangent Dirac structures of higher order %J Archivum mathematicum %D 2012 %P 233-241 %V 48 %N 3 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-3-233/ %R 10.5817/AM2012-3-233 %G en %F 10_5817_AM2012_3_233
Wamba, P. M. Kouotchop; Ntyam, A.; Kamga, J. Wouafo. Some properties of tangent Dirac structures of higher order. Archivum mathematicum, Tome 48 (2012) no. 3, pp. 233-241. doi: 10.5817/AM2012-3-233
[1] Cantrijn, F., Crampin, M., Sarlet, W., Saunders, D.: The canonical isomorphism between $T^{k}T^{\ast }$ and $T^{\ast }T^{k}$. C. R. Acad. Sci. Paris Sér. II 309 (1989), 1509–1514. | MR
[2] Courant, T.: Dirac manifolds. Trans. Amer. Math. Soc. 319 (2) (1990), 631–661. | DOI | MR
[3] Courant, T.: Tangent Dirac Structures. J. Phys. A: Math. Gen. 23 (22) (1990), 5153–5168. | DOI | MR | Zbl
[4] Courant, T.: Tangent Lie Algebroids. J. Phys. A: Math. Gen. 27 (13) (1994), 4527–4536. | DOI | MR | Zbl
[5] Gancarzewicz, J., Mikulski, W., Pogoda, Z.: Lifts of some tensor fields and connections to product preserving functors. Nagoya Math. J. 135 (1994), 1–41. | MR | Zbl
[6] Grabowski, J., Urbanski, P.: Tangent lifts of poisson and related structure. J. Phys. A: Math. Gen. 28 (23) (1995), 6743–6777. | DOI | MR
[7] Kolář, I.: Functorial prolongations of Lie algebroids. Proceedings of the 9th International Conference on Differential Geometry and its Applications, DGA 2004, Prague, Czech Republic, 2005, pp. 301–309. | MR | Zbl
[8] Kolář, I., Michor, P., Slovák, J.: Natural operations in differential geometry. Springer–Verlag, 1993. | MR | Zbl
[9] Kouotchop Wamba, P. M., Ntyam, A., Wouafo Kamga, J.: Tangent lift of higher order of multivector fields and applications. to appear.
[10] Kouotchop Wamba, P. M., Ntyam, A., Wouafo Kamga, J.: Tangent Dirac structures of higher order. Arch. Math. (Brno) 47 (2011), 17–22. | MR | Zbl
[11] Morimoto, A.: Lifting of some type of tensors fields and connections to tangent bundles of $p^{r}$-velocities. Nagoya Math. J. 40 (1970), 13–31. | MR
[12] Ntyam, A., Wouafo Kamga, J.: New versions of curvatures and torsion formulas of complete lifting of a linear connection to Weil bundles. Ann. Polon. Math. 82 (3) (2003), 233–240. | DOI | MR
[13] Ntyam, A., Mba, A.: On natural vector bundle morphisms $T^{A}\circ \bigotimes ^{q}_{s}\rightarrow \bigotimes ^{q}_{s}\circ T^{A}$ over $id_{T^{A}}$. Ann. Polon. Math. 96 (3) (2009), 295–301. | MR
[14] Wouafo Kamga, J.: Global prolongation of geometric objets to some jet spaces. International Centre for Theoretical Physics, Trieste, Italy, November 1997.
Cité par Sources :