Some properties of tangent Dirac structures of higher order
Archivum mathematicum, Tome 48 (2012) no. 3, pp. 233-241 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $M$ be a smooth manifold. The tangent lift of Dirac structure on $M$ was originally studied by T. Courant in [3]. The tangent lift of higher order of Dirac structure $L$ on $M$ has been studied in [10], where tangent Dirac structure of higher order are described locally. In this paper we give an intrinsic construction of tangent Dirac structure of higher order denoted by $L^{r}$ and we study some properties of this Dirac structure. In particular, we study the Lie algebroid and the presymplectic foliation induced by $L^{r}$.
Let $M$ be a smooth manifold. The tangent lift of Dirac structure on $M$ was originally studied by T. Courant in [3]. The tangent lift of higher order of Dirac structure $L$ on $M$ has been studied in [10], where tangent Dirac structure of higher order are described locally. In this paper we give an intrinsic construction of tangent Dirac structure of higher order denoted by $L^{r}$ and we study some properties of this Dirac structure. In particular, we study the Lie algebroid and the presymplectic foliation induced by $L^{r}$.
DOI : 10.5817/AM2012-3-233
Classification : 53C15, 53C75, 53D05
Keywords: Dirac structure; prolongations of vector fields; prolongations of differential forms; Dirac structure of higher order; natural transformations
@article{10_5817_AM2012_3_233,
     author = {Wamba, P. M. Kouotchop and Ntyam, A. and Kamga, J. Wouafo},
     title = {Some properties of tangent {Dirac} structures of higher order},
     journal = {Archivum mathematicum},
     pages = {233--241},
     year = {2012},
     volume = {48},
     number = {3},
     doi = {10.5817/AM2012-3-233},
     mrnumber = {2995874},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-3-233/}
}
TY  - JOUR
AU  - Wamba, P. M. Kouotchop
AU  - Ntyam, A.
AU  - Kamga, J. Wouafo
TI  - Some properties of tangent Dirac structures of higher order
JO  - Archivum mathematicum
PY  - 2012
SP  - 233
EP  - 241
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-3-233/
DO  - 10.5817/AM2012-3-233
LA  - en
ID  - 10_5817_AM2012_3_233
ER  - 
%0 Journal Article
%A Wamba, P. M. Kouotchop
%A Ntyam, A.
%A Kamga, J. Wouafo
%T Some properties of tangent Dirac structures of higher order
%J Archivum mathematicum
%D 2012
%P 233-241
%V 48
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-3-233/
%R 10.5817/AM2012-3-233
%G en
%F 10_5817_AM2012_3_233
Wamba, P. M. Kouotchop; Ntyam, A.; Kamga, J. Wouafo. Some properties of tangent Dirac structures of higher order. Archivum mathematicum, Tome 48 (2012) no. 3, pp. 233-241. doi: 10.5817/AM2012-3-233

[1] Cantrijn, F., Crampin, M., Sarlet, W., Saunders, D.: The canonical isomorphism between $T^{k}T^{\ast }$ and $T^{\ast }T^{k}$. C. R. Acad. Sci. Paris Sér. II 309 (1989), 1509–1514. | MR

[2] Courant, T.: Dirac manifolds. Trans. Amer. Math. Soc. 319 (2) (1990), 631–661. | DOI | MR

[3] Courant, T.: Tangent Dirac Structures. J. Phys. A: Math. Gen. 23 (22) (1990), 5153–5168. | DOI | MR | Zbl

[4] Courant, T.: Tangent Lie Algebroids. J. Phys. A: Math. Gen. 27 (13) (1994), 4527–4536. | DOI | MR | Zbl

[5] Gancarzewicz, J., Mikulski, W., Pogoda, Z.: Lifts of some tensor fields and connections to product preserving functors. Nagoya Math. J. 135 (1994), 1–41. | MR | Zbl

[6] Grabowski, J., Urbanski, P.: Tangent lifts of poisson and related structure. J. Phys. A: Math. Gen. 28 (23) (1995), 6743–6777. | DOI | MR

[7] Kolář, I.: Functorial prolongations of Lie algebroids. Proceedings of the 9th International Conference on Differential Geometry and its Applications, DGA 2004, Prague, Czech Republic, 2005, pp. 301–309. | MR | Zbl

[8] Kolář, I., Michor, P., Slovák, J.: Natural operations in differential geometry. Springer–Verlag, 1993. | MR | Zbl

[9] Kouotchop Wamba, P. M., Ntyam, A., Wouafo Kamga, J.: Tangent lift of higher order of multivector fields and applications. to appear.

[10] Kouotchop Wamba, P. M., Ntyam, A., Wouafo Kamga, J.: Tangent Dirac structures of higher order. Arch. Math. (Brno) 47 (2011), 17–22. | MR | Zbl

[11] Morimoto, A.: Lifting of some type of tensors fields and connections to tangent bundles of $p^{r}$-velocities. Nagoya Math. J. 40 (1970), 13–31. | MR

[12] Ntyam, A., Wouafo Kamga, J.: New versions of curvatures and torsion formulas of complete lifting of a linear connection to Weil bundles. Ann. Polon. Math. 82 (3) (2003), 233–240. | DOI | MR

[13] Ntyam, A., Mba, A.: On natural vector bundle morphisms $T^{A}\circ \bigotimes ^{q}_{s}\rightarrow \bigotimes ^{q}_{s}\circ T^{A}$ over $id_{T^{A}}$. Ann. Polon. Math. 96 (3) (2009), 295–301. | MR

[14] Wouafo Kamga, J.: Global prolongation of geometric objets to some jet spaces. International Centre for Theoretical Physics, Trieste, Italy, November 1997.

Cité par Sources :