Keywords: Cartan-Ambrose-Hicks theorem; development; linear and affine connections; rolling of manifolds
@article{10_5817_AM2012_3_207,
author = {Kokkonen, Petri},
title = {A characterization of isometries between {Riemannian} manifolds by using development along geodesic triangles},
journal = {Archivum mathematicum},
pages = {207--231},
year = {2012},
volume = {48},
number = {3},
doi = {10.5817/AM2012-3-207},
mrnumber = {2995873},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-3-207/}
}
TY - JOUR AU - Kokkonen, Petri TI - A characterization of isometries between Riemannian manifolds by using development along geodesic triangles JO - Archivum mathematicum PY - 2012 SP - 207 EP - 231 VL - 48 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-3-207/ DO - 10.5817/AM2012-3-207 LA - en ID - 10_5817_AM2012_3_207 ER -
%0 Journal Article %A Kokkonen, Petri %T A characterization of isometries between Riemannian manifolds by using development along geodesic triangles %J Archivum mathematicum %D 2012 %P 207-231 %V 48 %N 3 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-3-207/ %R 10.5817/AM2012-3-207 %G en %F 10_5817_AM2012_3_207
Kokkonen, Petri. A characterization of isometries between Riemannian manifolds by using development along geodesic triangles. Archivum mathematicum, Tome 48 (2012) no. 3, pp. 207-231. doi: 10.5817/AM2012-3-207
[1] Alouges, F., Y., Chitour, Long, R.: A motion planning algorithm for the rolling–body problem. IEEE Trans. on Robotics (2010). | DOI
[2] Blumenthal, R., Hebda, J.: The generalized Cartan-Ambrose-Hicks Theorem. Geom. Dedicata 29 (2) (1989), 163–175. | DOI | MR
[3] Cheeger, J., Ebin, D. G.: Comparison theorems in Riemannian geometry. North-Holland Math. Library 9 (1975). | MR
[4] Chelouah, A., Chitour, Y.: On the controllability and trajectories generation of rolling surfaces. Forum Math. 15 (2003), 727–758. | MR
[5] Chitour, Y., Kokkonen, P.: Rolling Manifolds: Intrinsic Formulation and Controllability. preprint, arXiv:1011.2925v2 [math.DG], 2011.
[6] Godoy Molina, M., Grong, E.: Geometric conditions for the existence of an intrinsic rolling. preprint, arXiv:1111.0752v1 [math.DG], 2011.
[7] Godoy Molina, M., Grong, E., Markina, I., Silva Leite, F.: An intrinsic formulation to the rolling manifolds problem. preprint, arXiv:1008.1856v1 [math.DG], 2010.
[8] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. vol. 1, Wiley–Interscience, 1996.
[9] Lee, J.: Introduction to smooth manifolds. Graduate Texts in Mathematics, vol. 218, Springer–Verlag, New York, 2003. | DOI | MR
[10] Pawel, K., Reckziegel, H.: Affine Submanifolds and the Theorem of Cartan–Ambrose–Hicks. Kodai Math. J. 25 (3) (2002), 341–356. | DOI | MR | Zbl
[11] Robbin, J. W., Salamon, D. A.: Introduction to Differential Geometry. ETH, Lecture Notes, preliminary version, January 2011, http://www.math.ethz.ch/~salamon/PREPRINTS/diffgeo2011.pdf
[12] Sakai, T.: Riemannian Geometry. Transl. Math. Monogr., 149, American Mathematical Society, Providence, RI, 1996. | MR
[13] Sharpe, R. W.: Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program. Graduate Texts in Mathematics, vol. 166, Springer–Verlag, New York, 1997. | MR
Cité par Sources :