A characterization of isometries between Riemannian manifolds by using development along geodesic triangles
Archivum mathematicum, Tome 48 (2012) no. 3, pp. 207-231 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we characterize the existence of Riemannian covering maps from a complete simply connected Riemannian manifold $(M,g)$ onto a complete Riemannian manifold $(\hat{M},\hat{g})$ in terms of developing geodesic triangles of $M$ onto $\hat{M}$. More precisely, we show that if $A_0\colon T|_{x_0} M\rightarrow T|_{\hat{x}_0}\hat{M}$ is some isometric map between the tangent spaces and if for any two geodesic triangles $\gamma $, $\omega $ of $M$ based at $x_0$ the development through $A_0$ of the composite path $\gamma \cdot \omega $ onto $\hat{M}$ results in a closed path based at $\hat{x}_0$, then there exists a Riemannian covering map $f\colon M\rightarrow \hat{M}$ whose differential at $x_0$ is precisely $A_0$. The converse of this result is also true.
In this paper we characterize the existence of Riemannian covering maps from a complete simply connected Riemannian manifold $(M,g)$ onto a complete Riemannian manifold $(\hat{M},\hat{g})$ in terms of developing geodesic triangles of $M$ onto $\hat{M}$. More precisely, we show that if $A_0\colon T|_{x_0} M\rightarrow T|_{\hat{x}_0}\hat{M}$ is some isometric map between the tangent spaces and if for any two geodesic triangles $\gamma $, $\omega $ of $M$ based at $x_0$ the development through $A_0$ of the composite path $\gamma \cdot \omega $ onto $\hat{M}$ results in a closed path based at $\hat{x}_0$, then there exists a Riemannian covering map $f\colon M\rightarrow \hat{M}$ whose differential at $x_0$ is precisely $A_0$. The converse of this result is also true.
DOI : 10.5817/AM2012-3-207
Classification : 53B05, 53B21, 53C05
Keywords: Cartan-Ambrose-Hicks theorem; development; linear and affine connections; rolling of manifolds
@article{10_5817_AM2012_3_207,
     author = {Kokkonen, Petri},
     title = {A characterization of isometries between {Riemannian} manifolds by using development along geodesic triangles},
     journal = {Archivum mathematicum},
     pages = {207--231},
     year = {2012},
     volume = {48},
     number = {3},
     doi = {10.5817/AM2012-3-207},
     mrnumber = {2995873},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-3-207/}
}
TY  - JOUR
AU  - Kokkonen, Petri
TI  - A characterization of isometries between Riemannian manifolds by using development along geodesic triangles
JO  - Archivum mathematicum
PY  - 2012
SP  - 207
EP  - 231
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-3-207/
DO  - 10.5817/AM2012-3-207
LA  - en
ID  - 10_5817_AM2012_3_207
ER  - 
%0 Journal Article
%A Kokkonen, Petri
%T A characterization of isometries between Riemannian manifolds by using development along geodesic triangles
%J Archivum mathematicum
%D 2012
%P 207-231
%V 48
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2012-3-207/
%R 10.5817/AM2012-3-207
%G en
%F 10_5817_AM2012_3_207
Kokkonen, Petri. A characterization of isometries between Riemannian manifolds by using development along geodesic triangles. Archivum mathematicum, Tome 48 (2012) no. 3, pp. 207-231. doi: 10.5817/AM2012-3-207

[1] Alouges, F., Y., Chitour, Long, R.: A motion planning algorithm for the rolling–body problem. IEEE Trans. on Robotics (2010). | DOI

[2] Blumenthal, R., Hebda, J.: The generalized Cartan-Ambrose-Hicks Theorem. Geom. Dedicata 29 (2) (1989), 163–175. | DOI | MR

[3] Cheeger, J., Ebin, D. G.: Comparison theorems in Riemannian geometry. North-Holland Math. Library 9 (1975). | MR

[4] Chelouah, A., Chitour, Y.: On the controllability and trajectories generation of rolling surfaces. Forum Math. 15 (2003), 727–758. | MR

[5] Chitour, Y., Kokkonen, P.: Rolling Manifolds: Intrinsic Formulation and Controllability. preprint, arXiv:1011.2925v2 [math.DG], 2011.

[6] Godoy Molina, M., Grong, E.: Geometric conditions for the existence of an intrinsic rolling. preprint, arXiv:1111.0752v1 [math.DG], 2011.

[7] Godoy Molina, M., Grong, E., Markina, I., Silva Leite, F.: An intrinsic formulation to the rolling manifolds problem. preprint, arXiv:1008.1856v1 [math.DG], 2010.

[8] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. vol. 1, Wiley–Interscience, 1996.

[9] Lee, J.: Introduction to smooth manifolds. Graduate Texts in Mathematics, vol. 218, Springer–Verlag, New York, 2003. | DOI | MR

[10] Pawel, K., Reckziegel, H.: Affine Submanifolds and the Theorem of Cartan–Ambrose–Hicks. Kodai Math. J. 25 (3) (2002), 341–356. | DOI | MR | Zbl

[11] Robbin, J. W., Salamon, D. A.: Introduction to Differential Geometry. ETH, Lecture Notes, preliminary version, January 2011, http://www.math.ethz.ch/~salamon/PREPRINTS/diffgeo2011.pdf

[12] Sakai, T.: Riemannian Geometry. Transl. Math. Monogr., 149, American Mathematical Society, Providence, RI, 1996. | MR

[13] Sharpe, R. W.: Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program. Graduate Texts in Mathematics, vol. 166, Springer–Verlag, New York, 1997. | MR

Cité par Sources :